Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Ozonization reaction of simple alkenes was studied by means of FT infrared absorption gas spectroscopy. The reaction was performed at 95 K in neat films of the reactants. IR absorption spectra of the gaseous products were recorded. The spectra were analyzed combining experimental results with theoretical calculations performed at B3LYP 6-311++G (3df, 3pd) level. We found that among all theoretically predicted conformers of propene secondary ozonide, only one which has the O-O half-chair configuration for the five membered ring and the radical attached in the equatorial position was present in the sample. Samples of 1-butene and 1-heptene secondary ozonides consist from two conformers of very similar energy (ΔH=0.3 kJ/mol). The most stable conformer for both ozonides is the one with O-O half-chair configuration of the five membered ring and the radical attached in equatorial position and the aliphatic chain in gauche position. The second stable conformer has the aliphatic chain in anti position.
EN
Theoretical calculations of structures, stability and vibrational spectra of 1-butene secondary ozonide (SOZ) conformers were performed using DFT method B3LYP with a 6-311++G(3df, 3pd) basis set. The calculations predict six staggered structures of 1-butene SOZ. The FTIR spectra of 1-butene SOZ isolated in Ar, N2 and Xe matrices were recorded. It was found that nitrogen is the best suited for the matrix isolation of 1-butene SOZ. The bandwidth of the spectral bands of the ozonide isolated in nitrogen was as narrow as 2 cm−1. For the first time the existence of five conformers of 1-butene SOZ were confirmed experimentally by means of matrix isolation infrared absorption spectroscopy. The equatorial gauche (∠OCCC=−66.1°) conformer was proved theoretically and experimentally to be the most stable. It was found that due to high potential barriers of the conformational transitions annealing of the matrix is useless for the assignment of spectral bands to various conformers of 1-butene SOZ. Using the hot nozzle technique the van’t Hoff experimental plots were made for three additional conformers of 1-butene SOZ and experimental ΔH values for these additional conformers were established. The crystallization problems of 1-butene SOZ are discussed which accounts for the rich conformational diversity of the ozonide as well as high conformational barriers for axial-equatorial transitions. [...]
EN
A new method is used for the separation of ethene secondary ozonide (SOZ) from the other products of ethene ozonization reaction. The reaction was performed in the neat films of the reactants at 77 K. Ethene SOZ was separated from other products of the reaction by vacuum distillation at 190–210 K and analyzed by means of the matrix isolation IR absorption spectroscopy. Spectroscopic data from photolysis of the matrix isolated ozonide was used as an argument for assignment of the infrared spectral bands either to ethene SOZ or to other products of the reaction. The spectra of ethene SOZ isolated in the Ar matrix were analyzed by combining experimental results with the theoretical calculations performed at the MP2 6-311+G (3df, 3pd) level. A new assignment of some experimental fundamental bands is proposed taking in to account the Fermi resonance between CH stretch and the five membered ring vibrations. For the first time more than 30 weak infrared absorption bands were observed and assigned to various combination vibrations and overtones. By using new spectral information concerning the overtones and the combination bands it is concluded that the dissociation of unstable ethene SOZ involving breaking of any of the four CO bonds of the five membered ring of ethene SOZ has low probability. Dissociation of the ring starts from breaking of the OO bond. [...]
EN
Specular reflection infrared microspectroscopy was used for chemical imaging of cross-sectioned urinary stones to determine their chemical composition and morphology simultaneously. Absorption spectral bands were recovered from reflection spectra by Kramers-Kronig transform. FUse of far-infrared radiation provides high-contrast images and allows more precise constituent distribution determinations than mid-infrared because band asymmetry after the transform caused by diffuse reflection is less in the far-infrared. [...]
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.