Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Frederic Chopin ? a great Polish composer and pianist ? suffered from a chronic disease. Both during his life and after death physicians disagreed on the subject of Chopin?s diagnosis. His contemporaries accepted the diagnosis of a disease common in the 18th century ? tuberculosis. Description of new clinical entities provoked new dilemmas in the 20th century. In our opinion the most tenable seems to be the diagnosis of cystic fibrosis. In this work we present F. Chopin?s case history and discuss cons and pron for cystic fibrosis as the cause of F. Chopin?s suffering and death.
EN
Introduction: Recently we identified in bone marrow (BM) by employing chemotactic isolation to SDF-1 gradient combined with real time RT-PCR analysis a mobile population of CXCR4+ BM mononuclear cells that express mRNA for various markers of early tissue-committed stem cells (TCSCs). In this study we evaluated whether TCSCs respond to other moto-morphogens, such as hepatocyte growth factor (HGF) and leukemia inhibitory factor (LIF). Materials and Methods: We again employed chemotactic isolation combined with real-time RT-PCR analysis to assess whether murine and human BM contain TCSCs that respond to HGF and LIF gradients. We also evaluated expressions of HGF and LIF in damaged organs. Results: We noted that the number of TCSCs is highest in BM from young (1- to 2-month-old) mice and decreases in 1-year-old animals. Murine and human TCSCs 1) respond to HGF and LIF gradients in addition to an SDF-1 gradient, 2) reside in populations of BM-derived non-hematopoietic CD45? cells, and 3) are released (mobilized) from BM into the peripheral blood (PB) during tissue injury (e.g. after partial body irradiation). Conclusions: These findings further support our theory of the BM as a ?hideout' for TCSCs and we suggest that their presence in BM tissue should be considered before experimental evidence is interpreted simply as transdifferentiation/plasticity of hematopoietic stem cells. Since we demonstrated that not only SDF-1, but also HGF and LIF are upregulated in damaged tissues, we postulate that CXCR4+ c-Met+ LIF-R+ TCSC could be mobilized from the BM into the PB, from which they are subsequently chemoattracted to damaged organs, where they play a role in tissue repair/regeneration.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.