Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
A glassy carbon electrode (GC) containing multiwalled functionalized carbon nanotubes (MWCNTs) immobilized within a dihexadecylhydrogenphosphate film (DHP) is proposed as a nanostructured platform for determination of methotrexate (MTX) concentration (a drug used in cancer treatment) using differential pulse adsorptive stripping voltammetry (DPAdSV). The voltammograms for a MTX solution using MWCNTs-DHP/GC electrode presented an oxidation peak potential at 0.98 V vs. Ag/AgCl (3.0 mol L−1 KCl) in a 0.1 mol L−1 sulphuric acid. The apparent heterogeneous electron transfer rate constant of 0.46 s−1 was calculated. The recovery area of 2.62×10−9 mol cm2 was also obtained. Under the optimal experimental conditions, the analytical curve was linear in the MTX concentration range from 5.0×10−8 to 5.0×10−6 mol L−1, with a detection limit of 3.3×10−8 mol L−1. The MWCNTs-DHP/GC electrode can be easily prepared and was applied for the determination of MTX in pharmaceutical formulations, with results similar to those obtained using a high-performance liquid chromatography comparative method. [...]
EN
An automated flow analyzer based on low temperature co-fired ceramic (LTCC), a solid-phase reactor (SPR) and a low-cost photometer was designed for ascorbic acid (AA) determination in pharmaceutical formulations. It consists of a peristaltic pump, three-way solenoid valves, SPR to chemically convert Cu(II) into Cu(I), and a LTCC device for mixing the liberated copper with bathocuproine and detection. The flow cell in the LTCC employed an ultrabright LED - photodiode photometer. The analyzer successfully determined AA in pharmaceutical formulations. The analytical curve from 8.5×10−6 to 7.0×10−4 M gave a detection limit of 7.0×10−7 M and a RSD of 2.1% for a 2.0×10−4 M AA solution (n = 10). A high sampling frequency of 102 h−1 and low reagent and sample consumption (150 µL) resulted.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.