Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
|
|
vol. 125
|
issue 2
248-250
EN
We studied the ability of Ag/nano-TiO_2 to inhibit Staphylococcus aureus growth on silicone elastomer material. Ag/nano-TiO_2 silicone elastomer was prepared with different concentrations of 0%, 2%, 4%, 6%, 8%, 10%. The antibacterial efficacy of Ag/nano-TiO_2 silicone elastomer was determined by the inhibition zone method and the impregnated culture method. The antibacterial timeliness of Ag/nano-TiO_2 silicone elastomer was tested by direct contact method. The samples were kept through thermal aging process in an accelerated aging chamber. The effect of concentrations of Ag/nano-TiO_2 was insignificant (P < 0.05). There was significant difference between the Ag/nano-TiO_2 silicone elastomer and the blank silicone elastomer (P < 0.5). There was also significant difference among specimen groups whose aging periods were 50°C, 100°C, 150°C, 200°C for 87 h (P < 0.5). The silicone elastomer with different concentrations of Ag/nano-TiO_2 effectively inhibits Staphylococcus aureus growth.
EN
In our contribution we present the fabrication of Si_{1-x}Ge_x alloy by ion-implantation and millisecond flash lamp annealing. The 100 keV Ge ions at the fluence of 10×10^{16}, 5×10^{16}, and 3×10^{16} cm^{-2} were implanted into monocrystalline (100)-oriented Si wafers covered by 50 nm thermal oxide. In the consequence, the 50 nm amorphous Ge rich Si layers were obtained. The recrystallization of the implanted layers and the Si_{1-x}Ge_x alloying were accomplished by flash lamp annealing with the pulse duration of 20 ms. Flash lamp treatment at high energy densities leads to local melting of the Ge-rich silicon layer. Then the recrystallization takes place due to the millisecond range liquid phase epitaxy. Formation of the high quality monocrystalline Si_{1-x}Ge_x layer was confirmed by the μ-Raman spectroscopy, the Rutherford backscattering channeling and cross-sectional transmission electron microscopy investigation. The μ-Raman spectra reveal three phonon modes located at around 293, 404, and 432 cm^{-1} corresponding to the Ge-Ge, Si-Ge and Si-Si in the Si_{1-x}Ge_x alloy vibrational modes, respectively. Due to much higher carrier mobility in the Si_{1-x}Ge_x layers than in silicon such system can be used for the fabrication of advanced microelectronic devices.
EN
Different semiconductor nanocrystals synthesized in dielectrics on silicon are very interesting for applications in non-volatile memories and photovoltaics. In this paper we present an overview of microstructural and opto-electronic properties of different III-V quantum dots embedded in SiO_2 and Si_3N_4 made by sequential ion implantation and millisecond range flash lamp annealing. It is shown that within 20 ms post-implantation annealing high quality crystalline III-V quantum dots can be formed in different matrices. Formation of crystalline III-V quantum dots was confirmed by cross-section transmission electron microscopy, photoluminescence and μ-Raman spectroscopy. Flash lamp annealing is essentially a single-flash-single-wafer technique whose main attributes are the ease and control of processing over large wafer batches.
EN
We report on electronic transport measurements of the magnetic semiconductor Ga_{1-x}Mn_{x}As, whereby the defect landscape in various metallic thin films (x=6%) was tuned by He-ion irradiation. Changes in the distribution of activation energies, which strongly determine the low-frequency 1/f-type resistance noise characteristics, were observed after irradiation and can be explained by deep-level traps residing in the As sublattice. Various other kinds of crystalline defects such as, for instance, Mn interstitials, which possibly form nanoscale magnetic clusters with a fluctuating spin orientation, also contribute to the 1/f noise and can give rise to random telegraph signals, which were observed in films with x=7%. In addition, we neither find evidence for a magnetic polaron percolation nor any features in the noise near the Curie temperature.
EN
Copper indium gallium diselenide (CIGS) becomes more significant for solar cell applications as an alternative to silicon. The quality of the layer has a critical impact on the final efficiency of the solar cell. An influence of the post-deposition millisecond range flash lamp annealing on the optical and microstructural properties of the CIGS films was investigated. Based on the Raman and photoluminescence spectroscopy, it is shown that flash lamp annealing reduces the defect concentration and leads to an increase of the photoluminescence intensity by a factor of six compared to the nonannealed sample. Moreover, after flash lamp annealing the degradation of the photoluminescence is significantly suppressed and the absolute absorption in the wavelength range of 200-1200 nm increases by 25%.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.