Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
|
2007
|
vol. 54
|
issue 3
665-670
EN
Photodynamic therapy (PDT) is based on photosensitizers activated by light of appropriate wavelength. Their activation leads to generation of singlet oxygen and free radicals responsible for the cytotoxic effect. The aim of this project was to compare the bactericidal effect of PDT using different porphyrin photosensitizers against a methicillin-resistant Staphylococcus aureus strain. Exogenous sensitizers (protoporphyrin IX and newly synthesized derivative, protoporphyrin diarginate) induced a 3 log10-unit reduction in bacterial viable counts. With the use of endogenous, ALA-induced porphyrins, a 1.6 log10-unit reduction was obtained. The sensitizers tested executed their antibacterial activity with no essential change in the antibiotic resistance pattern of the studied strain.
EN
Photodynamic therapy (PDT), used for cancer treatment, is also an alternative method for eradication of drug-resistant bacteria. This method utilizes a nontoxic light-activated dye, called a photosensitizer, and visible light to produce reactive oxygen species that lead to bacterial cell death. The purpose of this study was to investigate the bactericidal effect of PDT using lanthanide derivatives of meso-tetra(N-methyl-4-pyridyl)porphine against Staphylococcus aureus strains. The new photosensitizers appeared to be photodynamically ineffective. No enhancement of antistaphylococcal activity of TMPyP was observed after the conjugation of the porphyrin with lanthanide ions. Additionally, a significant difference in the susceptibility of two bacterial strains to unmodified TMPyP was observed.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.