Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Widely used CFD codes enable modelling of PC boilers operation. One of the areas where these numerical simulations are especially promising is predicting deposition on heat transfer surfaces, mostly superheaters. The basic goal of all simulations is to determine trajectories of ash particles in the vicinity of superheater tubes. It results in finding where on the surface the tube will be hit by particles, and what diameter and mass flow of the particles are. This paper presents results of CFD simulations for a single tube and a bundle of in-line tubes as well. It has been shown that available parameters like ash particle density, shape factor, reflection coefficients affect the trajectories in a different way. All the simulations were carried out with Fluent code of Ansys software.
2
100%
EN
One of the methods of obtaining energy from renewable sources is the technology of indirect cofiring of biomass. It consists in the gasification of secondary fuel and combustion of the generated gas in the boiler together with its primary fuel. The paper presents a thermodynamic analysis of the use of the boiler flue gases as the converting medium in the process of indirect co-firing - a technology which is being developed at the Institute of Power Engineering and Turbomachinery of the Silesian University of Technology. The basis of the analysis are the data resulting from variant calculations conducted with the use of the Gaseq program. The calculations were made for various compositions of gasified fuel and the converting medium, variable fuel/oxidiser ratios and variable gasification temperatures. As a result, the equilibrium composition and the calorific value of the generated gas were obtained. The main optimisation objective adopted here was the nondimensional efficiency coefficient, which is the ratio of the chemical energy of products to the chemical energy of the process reactants.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.