Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
Electrocoagulation makes an alternative method to chemical coagulation. This paper presents the results obtained during the electrocoagulation of the model wastewater using aluminum electrodes. The wastewater was treated by means of chronopotentiometric electrocoagulation process in a static system, at the constant current I = 0.3 A; therefore higher doses of electrocoagulant required longer electrocoagulation time. Changes in zeta potential, pH, turbidity, chemical oxygen demand (COD), suspended solids and total phosphorus concentrations in the treated wastewater were determined. A new method for determining the optimal dosage of the aluminum electrocoagulant was proposed through application of the third degree polynomial function rather than the parabolic equation. An increase in the electrocoagulant dose raised the share of sweep fl occulation in the studied treatment process, resulting in the effective removal over 90% of phosphorus compounds from the system.
EN
This paper discusses the results of laboratory analyses of the coagulation and flocculation of model wastewater. The investigated wastewater was susceptible to treatment by chemical coagulation. The effectiveness of two commercial coagulants, PAC produced at the DEMPOL-ECO Chemical Plant and PIX manufactured by KEMIPOL, was compared. A mathematical model relying on a second-degree polynomial was used to describe and analyze experimental data. In each case, the parabola minimum point was a precisely determined coagulant dose, regarded as the optimal dose. The application of a coagulant dose higher than the optimal dose reduced the effectiveness of wastewater treatment by coagulation. A detailed analysis of turbidity, suspended solids, total phosphorus and pollutant removal measured by the COD test revealed that PAC was a more effective and a more efficient coagulant than PIX. The risk of coagulant overdosing was greater with the use of PAC than PIX.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.