Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Exploration of force coordination has been one of the most often used approaches in studies of hand function. When holding and manipulating a hand-held object healthy individuals are typically able to highly coordinate the perpendicular (grip force; GF) with the tangential component of the contact force (load force; LF). The purpose of this review is to present the findings of our recent studies of GF-LF coordination. Regarding the mechanical factors affecting GF-LF coordination, our data suggest that both different hand segments and their particular skin areas could have markedly different friction properties. It also appears that the absolute, rather than relative safety margin (i.e., how much the actual GF exceeds the minimum value that prevents slipping) should be a variable of choice when assessing the applied magnitude of GF. The safety margin could also be lower in static than in free holding tasks. Regarding the involved neural factors, the data suggest that the increased frequency, rather than an increased range of a cyclic LF could have a prominent detrimental effect on the GF-LF coordination. Finally, it appears that the given instructions (e.g., 'to hold' vs. 'to pull') can prominently alter GF-LF coordination in otherwise identical manipulation tasks. Conversely, the effects of handedness could be relatively week showing only slight lagging of GF in the non-dominant, but not in the dominant hand. The presented findings reveal important aspects of hand function as seen through GF-LF coordination. Specifically, the use of specific hand areas for grasping, calculation of particular safety margins, the role of LF frequency (but not of LF range) and the effects of given instructions should be all taken into account when conducting future studies of manipulation tasks, standardizing their procedures and designing routine clinical tests of hand function.
EN
Fatigue is an indispensible part of a basketball game which may affect an athlete's shooting kinematics. Although kinematic analyses of various sports related movements were extensively done, this study is the first to consider the effects of fatigue on the kinematics of free throw shooting. After measuring the resting heart rate, ten collegiate level, male basketball players (21.8±1.6 y; 192.8±3.6 cm; 84.1±8.5 kg) were asked to perform free throws. Two successful and two unsuccessful free throws were selected. Thereafter, participants were asked to complete the fatigue protocol, which included 30m sprints and 5 vertical jumps at each end, until they reached volitional exhaustion. Additional two successful and two unsuccessful free throws were collected. All shots were recorded by using two digital cameras operating at 60 Hz and placed in a stereoscopic view. The elbow, trunk, knee and ankle joint angles were measured before and after the ball release and at the ball release point. The selected joint angles were compared between successful and unsuccessful free throws, as well as before and after the completion of fatigue protocol. The results demonstrated that fatigue did not effect free throw shooting kinematics (p>0.05) and there was no significant joint angle difference between successful and unsuccessful shots (p>0.05). This study suggested that high level athletes are able to cope with the possible detrimental effects of fatigue while performing coordinated movements such as free throw shooting.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.