Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Scanning tunneling microscopy studies have revealed a periodic step-terrace structure in the (100) surface of the Ag-In-Yb 1/1 cubic approximant. The step height between the large terraces is about 0.73 nm, approximately one-half of the lattice constant, which is consistent with the bcc-like crystalline structure of this crystal. Two small terraces are observed between the adjacent large terraces. High-resolution STM images of the large terrace exhibit a square lattice of protrusions with a lattice constant of about 1.55 nm, which is consistent with the bulk lattice constant. The scanning tunneling microscopy results suggest that the large terraces are associated with the planes that intersect the centers of rhombic triacontrahedral clusters (the building unit of the crystal) and show the highest atomic density along the [100] axis. It is highly likely that the small terraces are related to moderate atomic density planes and are less stable than the large terraces.
2
86%
EN
Scanning tunneling microscopy is employed to characterise the structure and morphology of the (100) surface of the Ag-In-Gd 1/1 approximant. The surface prepared by the usual method of sputter-annealing produces step-terrace structure. Observed step heights are consistent with the lattice constant of the bulk. Scanning tunneling microscopy on terraces reveals cluster-like protrusions arranged with a square unit cell as expected from the bulk. It has not been possible to assign the terraces to the specific bulk planes because of lack of atomic resolution on terraces.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.