Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Rapid growth of the amount of available biological data made it clear that an analysis of complex biological processes can be made only with the support of mathematics and computer sciences. It is especially important nowadays when the systems biology approach is becoming more and more widely used in biological science. This new way of investigation of biological phenomena allows, at least in principle, to observe complex relationships between different parts of the analyzed system. These interactions may be crucial for the system's nature and behavior, so observing them may lead to important biological discoveries. Probably the most important part of this process consists in building of a formal model of the biological process. One of the promising methods of such an analysis is based on the theory of Petri nets. Models expressed in the language of this theory are very precise on the one hand, and on the other, they are intuitive, which makes their analysis easier in comparison, for example, to models based on ordinary differential equations. In this paper, a brief introduction to the theory of Petri nets is given and its applications for modeling of some exemplary biological processes are shortly discussed. Moreover, some extensions of the classical Petri nets and their biological applications are also presented.
PL
Hipotezę zakładającą, że wyższe stężenie żelaza w surowicy odgrywa ważną rolę w rozwoju chorób układu sercowo-naczyniowego zaproponował w 1981 r. J.L. Sullivan. Dziś, wyniki coraz liczniejszych badań potwierdzają istotne znaczenie żelaza w rozwoju miażdżycy. Zasadniczą rolę przypisuje się katalizowanej przez jony tego pierwiastka reakcji Fentona, w następstwie której powstaje silnie toksyczny rodnik hydroksylowy, biorący udział w peroksydacji lipidów. W następstwie wspomnianego procesu powstają zmienione cząsteczki lipidowe, które w sposób nieograniczony wyłapywane są przez komórki jednojądrzaste i stają się komórkami piankowatymi, a potem ciałkami apoptotycznymi tworzącymi blaszkę miażdżycową. W pracy tej przedstawiono systemowe podejście do badania prezentowanego zagadnienia. W tym celu został zbudowany model dotyczący udziału żelaza w powstawaniu miażdżycy oparty na sieciach Petriego. Analiza tego modelu pozwoliła na wyciągnięcie wniosków, iż bez reakcji Fentona, którą katalizuje żelazo, blaszka miażdżycowa nie może powstać.
EN
The hypothesis that higher serum iron concentration plays an important role in the development of diseases of the cardiovascular system has been proposed in 1981 by J.L. Sullivan. Nowadays, more and more research results confirm importance of iron in the development of atherosclerosis. The essential role plays Fenton reaction catalyzed by ions of this chemical element, which produces highly toxic hydroxyl radical involved in lipids peroxidation. As a result of this process, modified lipid molecules are produced and phagocytosed in unlimited way by mononuclear cells to become foam cells and then apoptotic bodies that form atherosclerotic plaque. In this paper, a systemic approach to the study of these issue is presented. For this purpose, a model based on Petri nets of the iron participation in the development of atherosclerosis has been built. The analysis of this model allowed us to draw the conclusion that without the Fenton reaction, which is catalyzed by iron, atherosclerotic plaque cannot actually arise.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.