Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Differences in fear level assessment based on the time of motionless in the illuminated compartment, time spent in light compartment, number of head dipping from dark to the illuminated compartment and number of returns from dark to the illuminated compartment registered in light/dark transitions test and brain monoamines (NA, DA, 5-HT) and their metabolites (MHPG, DOPAC, 5-HIAA) in the hypothalamus, midbrain, amygdala, hippocampus and pons were examined in 3, 12 and 24 months old Wistar rats. The lowest level of fear was registered in 12 months old rats, a slightly higher level in 3 months old rats and the highest in 24 months old rats. Locomotion activity showed a decreasing tendency within age according to a linear dependence in 3, 12 and 24 months old rats. Neurochemical data showed the decreased activity of NA system and increased activity of DA system in most structures already occurred in 12 months old rats. It remained at the same level in aged rats. The correlation analysis between the behavioral markers of fear level and distribution of monoamines in young, mature and aged rats showed diversified data, only some of them being consistent with the 'serotonergic hypothesis' of fear/anxiety. Therefore, we cannot conclude what neurochemical background of fear is.
EN
The effects of R(+)-8-Hydroxy-dipropyl-aminotetralin, (R(+)-8-OHDPAT) and R(+)-5-Fluoro-Hydroxy-dipropyloaminotetralin (R(+)-UH-301) injection into the dorsal raphe nucleus (DRN) on fear behavior in a modified version of the light-dark transitions test and regional brain monoamines (NA, DA, 5-HT) and their metabolites ( MHPG, DOPAC, 5-HIAA) in the hypothalamus (HPT), midbrain central gray matter (MID), amygdala (AMY), hippocampus (HIP) and pons (PO) were examined. An injection of R(+)-8-OHDPAT (300 ng) as well R(+)-UH-301 (300 ng) into the DRN evoked i) an increase in the number of head dipping from dark to the illuminated compartment of chamber; ii) an increase of time spent motionless in the dark compartment; iii) decrease of time of locomotion activity in the illuminated compartment. There was no effect on (1) time out from the illuminated to the dark compartment; (2) time of locomotion activity in the dark compartment; (3) time spent motionless in the illuminated compartment; 4) the number of returns from the dark to the illuminated compartment. HPLC analysis showed reduction of 5-HIAA/5-HT ratio in the HPT, HIP and PO, reduction of 5-HT in the MID, increase of NA content in the HPT and AMY, increase of MHPG/NA ratio in the HIP and PO, and increase of DA content in the HPT, AMY and HIP and increase of DOPAC content in the HIP after R(+)-8-OHDPAT injection into the DRN. But injection of R(+)-UH-301 into the DRN reduced 5-HT in the MID and increased in the AMY, reduced 5-HIAA content in the HIP and increased in the MID, reduced NA content in the HIP and increased in the HPT and decreased MHPG/NA ratio in the PO. These results indicate that both 5-HT1A receptor agonists, R(+)-8-OHDPAT and R(+)-UH-301, acting on the 5HT1A autoreceptors caused the anxiolytic effects, reduced fear behavior on the rat connected with infringement of dynamic balance between the serotonergic and catecholaminergics systems.
EN
The aim of the present study is to examine the effects of serotonin synthesis inhibition with p-Chlorophenylalanine (p-CPA) in rats on (1) anxiety behavior examined in the light-dark crossing test and, (2) regional brain concentration of monoamines (NA, DA and 5-HT) and their metabolites (MHPG, DOPAC, HVA and 5-HIAA) as well as GABA in the hypothalamus, amygdala, hippocampus, midbrain central gray matter and the frontal cortex. Treatment of animals with p-CPA produced a significant increase in time out from the illuminated part of the chamber and in time of locomotor activity in the illuminated part of the chamber. HPLC analysis showed a significant reduction of 5-HT and 5-HIAA concentration in all examined brain regions with the exception of the frontal cortex. Additionally, a significant decrease in DA and its metabolites, DOPAC and HVA occurred in the hypothalamus and amygdala. Moreover, we observed a significant decrease in frontal cortex NA concentration after p-CPA administration. The results of our study suggest that administration of p-CPA is effective in reduction of anxiety through depletion of 5-HT accompanied by diminution of catecholamines, especially DA and its metabolites in the main emotional brain regions.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.