Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Backround: The present review focuses on electrochemical methods for antioxidant capacity and its main contributors assessment. The main reactive oxygen species, responsible for low density lipoprotein oxidation, and their reactivity are reminded. The role of antioxidants in counteracting the factors leading to oxidative stress-related degenerative diseases occurence, is then discussed. Antioxidants can scavenge free radicals, can chelate pro-oxidative metal ions, or quench singlet oxygen. When endogenous factors (uric acid, bilirubin, albumin, metallothioneins, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase) cannot accomplish their protective role against reactive oxygen species, the intervention of exogenous antioxidants (vitamin C, tocopherols, flavonoids, carotenoids etc) is required, as intake from food, as nutritional supplements or as pharmaceutical products. Literature study: The main advantages of electrochemical methods with respect to traditional, more laborious instrumental techniques are described: sensitivity, rapidity, simplicity of the applied analytical procedure which does not require complicated sample pre-treatment etc. The paper reviews minutiously the voltammetric, amperometric, biamperometric, potentiometric and coulometric methods for total antioxidant capacity estimation. For each method presented, the electroactivity and the mechanism of electro-oxidation of antioxidant molecules at various electrodes, as well as the influences on the electroactive properties are discussed. The characteristics of the developed methods are viewed from the perspective of the antioxidant molecule structure influence, as well as from the importance of electrode material and/or surface groups standpoint. The antioxidant molecule-electrode surface interaction, the detection system chosen, the use of modifiers, as well as the nature of the analysed matrix are the factors discussed, which influence the performances of the studied electrochemical techniques. Conclusions: The electrochemical methods reviewed in this paper allow the successful determination of the total antioxidant capacity and of its main contributors in various media: foodstuffs and beverages, biological fluids, pharmaceuticals. The advantages and disadvantages of the electrochemical methods applied to antioxidant content and antioxidant activity assay are treated and interpreted, in the case of various analysed matrixes. Combining advanced materials with classical electrode construction, provides viable results and can constitute an alternative for the future.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.