Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Hot extrusion process was applied to Ni_{54.3}Fe_{16.2}Ga_{29.5} polycrystalline alloy. Then the rod was annealed subsequently for 1 h at 700, 800, 900, and 1100°C. In this paper the effect of annealing on the microstructure of the polycrystalline extruded Ni-Fe-Ga alloy were analyzed. The structure of the alloys was determined by the X-ray and transmission electron microscopy. The electron backscattering diffraction technique was applied to obtain the texture of the extruded rods after heat treatment.
EN
Series of Ni_{45.5-x}Co_{4.5}Mn_{36.6}In_{13.4}B_{x} (at.%, x=0, 0.05, 0.1, 0.5, 1.0) polycrystalline magnetic shape memory alloys were examined in terms of the magnetic properties, structure and transition temperatures. Depending on the boron concentration single or two phase alloys microstructures were observed. Additionally, the martensitic transformation temperatures decreases with the boron addition. Magnetic-field induced transformation occurs for the alloys with the boron addition up to 0.1 at.%. For alloys with 0.5 and 1.0 at.% of B transformation is hindered.
EN
Series of Ni_{45.5-x}Co_{4.5}Mn_{36.6}In_{13.4}B_{x} (at.%, x=0, 0.05, 0.1, 0.5, 1.0) polycrystalline magnetic shape memory alloys produced by the induction melting were examined in terms of the structure and transition temperatures. The structure of the alloys was determined by the X-ray diffraction and transmission electron microscopy. Scanning electron microscopy and electron backscattering diffraction techniques were applied to obtain the microstructure and texture of alloys. Boron addition promotes nucleation of the second Co-rich and In-poor phase as well as causes decrease of the martensitic transformation temperatures.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.