Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 6

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
High demands that are posed to modern materials exposed to the action of thermal, mechanical or chemical loads oblige one to seek new solutions and technologies. Compliance with these expectations requires designing the composite materials without structural notches, and the application of gradient materials. Transient zone, determining the interphase compound, is an essential element of each composite. Interaction forces creating transient structural zones determine the value of the adhesion forces. Among all forces determining the adhesion the strongest are the forces of a chemical bond. Therefore, the molecular modeling should be a valuable method to investigate and design the composites. In the presented research the conditions of coat adhesion of the Ti (C,N,O)-type to steel substrate are taken into consideration. Using a standard quantum-chemistry program, the energies of the following systems (clusters) - Fe-α- N-Ti, Fe-α-C-Ti, and Fe-α-O-Ti - are calculated. The aim of the analysis was to determine the conditions for preparation of initial substrate, which are advantageous for the process of coat formation. This analysis confirmed benefits arising from nitriding as an initial treatment of the steel.
EN
Two powder samples: nanocrystalline titanium carbide (TiC) and titanium nitride (TiN) dispersed in a carbon matrix were synthesized by a nonhydrolytic sol-gel process. Both samples were characterized by the X-ray diffraction and transmission electron microscopy. The transmission electron microscopy examination of the TiC and TiN nanoparticles showed that their average crystalline size was about 20 nm. The temperature dependence of the EPR spectra for both samples was measured in 10 K to 200 K temperature range. A similar very narrow (about 0.2 mT) EPR line centered at g≈2 (at room temperature) was recorded in both samples. The EPR line observed in both samples is arising from electron conductivity centers dispersed in the carbon matrix and it was fitted by Dysonian line shape. The temperature dependence of the EPR spectrum showed different behavior of these two samples. It is suggested that in the sample TiC/C multiwall carbon nanotubes are formed while in the sample TiN/C the graphite structure dominates.
EN
The investigations into ferromagnetic resonance and magnetic susceptibility of nanocrystalline TiB₂, TiC, and B₄C powders (Ti-B-C system) doped to AISI 316L austenitic steel with different amounts (3 vol.%, 5 vol.% and 7 vol.%) have been carried out. The ferromagnetic resonance spectra were recorded in the temperature range from helium up to room temperature. The three tested composite samples contain a number of magnetic phases in different proportions. They reveal a structure originating from several different complex magnetic centers. The composites revealed such magnetic phenomena as paramagnetism, (anti)ferromagnetism, and superparamagnetism. Magnetic susceptibility investigations supported the ferromagnetic resonance studies and their analysis. Magnetic properties of the TiB₂, TiC, B₄C powders doped to AISI steel may play important role in further possible applications of these composite systems.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.