Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Physics
|
2007
|
vol. 5
|
issue 1
1-10
EN
This work investigates the feasibility of detecting close, detached, black hole-red dwarf binaries, which are expected to be evolutionary precursors of low-mass X-ray binaries (LMXBs). Although this pre-low-mass X-ray binary (pre-LMXB) phase of evolution is predicted theoretically, as yet no such systems have been identified observationally. The calculations presented here suggest that the X-ray luminosity of black hole wind accretion in a pre-LMXB system could exceed the intrinsic X-ray luminosity of the red dwarf secondary star, thereby providing a detection mechanism. However, there is significant uncertainty regarding the efficiency of the conversion of gravitational potential energy to X-ray luminosity resulting from accretion onto a black hole, for example energy may be lost via advection across the event horizon. Still, sources with X-ray luminosities greater than that expected for a red dwarf star, but whose positions coincide with that of a red dwarf would represent candidate pre-LMXB systems. These candidates should be surveyed for the radial velocity shifts that would occur as a result of the orbital motion of a red dwarf star within a close binary system containing a black hole.
EN
In a series of papers it was discussed,on the basis of phenomenological arguments, whether the high frequency quasiperiodic oscillations (kHz QPOs)observed in the neutron-star and black-hole X-ray sources originate in the same physical mechanism. Recently it was suggested that a general trend seen in neutron star kHz QPOs instead excludes such a uniform origin. Using the example of the atoll source 4U 1636-53 we illustrate that this is not neccesarily true.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.