Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Based on the calculation about intervalley scattering rates in ZnS, the intervalley transfer process in ZnS-type thin film electroluminescent devices is investigated through the Monte Carlo simulation. The transient time of intervalley transfer is about 0.2-0.3 ps, it coincides with that of electron average energy. Intervalley distribution shifts to high valleys as the electric field increased. The electron kinetic energy distributions in different valleys are also gained. We propose that high valleys could store energies, which could prolong the decay of the electron average energy as the field was removed. These results could be used as the basic data on the study of electroluminescent process and the citation of valley parameters in analytic models should be carefully considered.
EN
In this paper, an analytical band model is introduced in Monte Carlo simulation of electric transport process in thin film electroluminescent devices. The band structure of ZnS calculated from the empirical pseudopotential method is fitted by using polynomials. The density of states and scattering rates are also calculated from these polynomials. Based on these results, the electric transport process in ZnS-type thin film electroluminescent devices is simulated through the Monte Carlo method. By comparison with others, this model is as fast as the nonparabolic model and as accurate as the full band model. Furthermore, the influence of the band model on the simulation results is also investigated. We show that the dispersion relation and density of states are all important in the simulation.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.