We present a method to fabricate binary organic donor and acceptor blends exhibiting a controlled lateral gradient in morphology. Upon combining photometry, ellipsometry and Xray maps together with photoinduced absorption measurements, we show how the gradual exposure to solvent vapor results in a varying degree of polymer crystallinity for the polythiophene/soluble fullerene system along one direction. These morphologically graded samples are characterized by a spectral photoresponse that depends on the specific location in the area of the device where the light beam impinges, a property that stands as proof-of-concept for position sensitive detection. Moreover, we demonstrate that the development of graded morphologies is an effective one-step method which allows for fast performance optimization of organic solar cells. Finally, the appropriateness of eight different solvents for morphology control via vapor annealing is evaluated in a time-effective way using the advanced method, which helps to identify boiling point and solubility as the key processing parameters.
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.