Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Chemistry
|
2009
|
vol. 7
|
issue 4
794-802
EN
Using glucose as a structuring additive and aluminium nitrate as the Al precursor, a novel kind of mesoporous Al2O3 microspheres with flower-like structure were synthesized hydrothermally at 180°C for 20 h. When the synthesis temperature was lowered to 140°C, the carambola-like Al2O3 can be synthesized. This approach is convenient and simple, and flower-like Ce-Al2O3 and La-Al2O3 spheres have also been prepared in this way. It may be applied to synthesize other metal oxides when suitable precursor salts are used. From an analysis of the experimental results, a mechanism for the formation of the flower-like Al2O3 spheres has been proposed and discussed. [...]
EN
Models to predict binding constant (logK) to bovine serum albumin (BSA) should be very useful in the pharmaceutical industry to help speed up the design of new compounds, especially as far as pharmacokinetics is concerned. We present here an extensive list of logK binding constants for thirty-five compounds to BSA determined by florescence quenching from the literature. These data have allowed us the derivation of a quantitative structure-property relationship (QSPR) model to predict binding constants to BSA of compounds on the basis of their structure. A stepwise multiple linear regression (MLR) was performed to build the model. The statistical parameter provided by the MLR model (R = 0.9200, RMS = 0.3305) indicated satisfactory stability and predictive ability for the model. Using florescence quenching spectroscopy, we also experimentally determined the binding constants to BSA for two bioactive components in traditional Chinese medicines. Using the proposed model it was possible to predict the binding constants for each, which were in good agreement with the experimental results. This QSPR approach can contribute to a better understanding of structural factors of the compounds responsible for drug-protein interactions, and be useful in predicting the binding constants of other compounds. [...]
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.