Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Introduction: The statin-induced effects on high density lipoprotein (HDL) are relatively small compared with those of low density lipoprotein (LDL) and, as a result, most clinical trials of statins are underpowered with respect to HDL parameters. This study experimentally investigated, the effects of statin on serum lipids, atherogenic index and examined the possibility of a relationship amongst serum concentrations of HDL-C, atherogenic index and activity of lecithin:cholesterol acyl transferase. Method: Thirty albino rats equally divided into 2 groups were used for the study. Group 1 was given 0.05mg/g of statin daily for 28 days, while group 2 served as control. HDL concentration was determined as a measure of HDL-C. Total cholesterol (TC), triglyceride (TG) and HDL-C were determined spectrophotometrically while LDL-C was calculated using the Frieldwald formula. Effect on the activity of lecithin:cholesterol acyl transferase was determined by the difference between the amount of free cholesterol converted to cholesteryl ester in the two experimental groups. Effects on body and relative organs weights were also determined. Results: The administration of statin caused a significant increase in serum concentration of HDL-C, while levels of LDL-C, triglyceride and total cholesterol were reduced. Simvastatin caused a significant reduction in the atherogenic index (TC/HDL-C; LDLC/HDL-C). The administration of statin significantly induced the activity of lecithin:cholesterol acyl transferase (LCAT) as evident by reduced serum concentration of free cholesterol when compared with control. The administration of statin caused reduced body and relative organs weights. Conclusion: The study showed that serum antihyperlipidemic and antiatherogenic activity of statin may involve the induction of LCAT.
EN
Occupational exposures to environmental toxicants have been associated with the onset of skin lesions-including cancers. Identification and reduction of exposure to such compounds is an important public health goal. We examined the effect of cashew shell oil (CSO), used in skin tattooing for its potential to induce skin transformation in rats. Corn oil and CSO (25, 50, and 100%) were topically applied to depilated sections of Wistar' rat skin (groups: I-IV) for six weeks. Effect of treatments on serum transaminases activity, histological changes in hepatocytes and induction of micronuclei in the bone marrow were examined. In addition, CSO-induced hepatocyte proliferation was also quantified. All animals survived the course of the study. Reduced percentage change in body weight and physical trauma were observed in CSO-treated rat. The effects were more prominent in Group IV (100% CSO). Relative liver weights and number of hepatocytes (cells/mm2) increased significantly in groups II-IV relative to control (p < 0.05). Serum transaminases activities were not significantly (p > 0.05) affected in treated groups. Hepatic histopathology revealed moderate sinusoidal congestion (group II), in addition to portal congestion in (group III), with mononuclear cellular infiltration (group IV) animals. In addition, CSO induced significant micronuclei formation of polychromatic erythrocyte (mPCEs) in the rat bone marrow (p < 0.05) when compared with control. Topical application of CSO disrupted skin cells integrity resulting in physical trauma. In addition, CSO appears to be clastogenic and induces hepatocyte proliferation. Occupational exposure to CSO especially for engraving tattoos in humans should be discouraged and further studies need to be conducted.
EN
Exposure to environmental pollutants often leads to an upsurge in the production of reactive oxygen species (ROS). ROS oxidize cellular fatty acids to produce lipid peroxyl radicals, subsequently transformed into lipid peroxides, which decrease membrane fluidity and increase the activity of various enzymes implicated in degenerative diseases and cancer formation. Edible plants that contain exogenous compounds like curcumeroid, β-carotene, turmeric, and so on, protect the aerobic cells from oxidation of free radicals. This study thus evaluates antioxidant and antimutagenic activities of ethyl acetate, aqueous and methanolic fractions of Holarrhena floribunda leaves. Inhibitory activities of the ethyl acetate fraction on Fe2+-induced lipid peroxidation in hen egg yolk; rat liver and brain tissues were also evaluated. The Allium cepa root assay was used to evaluate antimutagenic activity. Results showed that the ethyl acetate scavenged DPPH, OH•, and •O2- much stronger than other fractions, as evidenced by its lowest respective IC50 values. All the fractions displayed antimutagenic activities against cyclophosphamide-induced chromosomal aberrations. Likewise, all the fractions induced a reduction in mitotic index, a hallmark of cytotoxicity in the root meristem of Allium cepa. The decrease in mitotic index was most profound for the ethyl acetate fraction, which also demonstrated a significant lipid peroxidation inhibitory activity in the liver and brain homogenates, but not in egg yolk, compared with the ascorbic acid standard. In general, the results suggest that the ethyl acetate fraction might contain beneficial phytochemicals that should be explored as novel candidates for preclinical drug development.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.