Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Physics
|
2007
|
vol. 5
|
issue 4
558-569
EN
In our study, the 1% mol Eu2+ doped Li2CaSiO4: B3+ phosphors were prepared by the combustion method as fluorescent material for ultraviolet, light-emitting diodes (UV-LEDs) used as a light source. The properties of Li2 (Ca0.99, Eu0.01) SiO4: B3+ phosphors with urea concentration, doping boric acid and a series of initiating combustion temperature were investigated. The crystallization and particle sizes of Li2 (Ca0.99, Eu0.01) SiO4: B3+ has been investigated by using powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). Luminescence measurements showed that the phosphors can be efficiently excited by UV to the visible region, and exhibited bluish green light with a peak of 480 nm. The results showed that the boric acid was effective in improving the luminescence intensity of Li2 (Ca0.99, Eu0.01) SiO4: B3+ and the optimum molar ratio of boric acid to calcium nitrate was about 0.06. The optimized phosphors Li2 (Ca0.99, Eu0.01) SiO4: B0.063+ showed 180% improved emission intensity compared with that of the Li2 (Ca0.99, Eu0.01) SiO4 phosphors under ultraviolet (λex =287 nm) excitation.
Open Physics
|
2010
|
vol. 8
|
issue 5
766-770
EN
SrMoO4:Eu3+ red phosphors were prepared by combining sol-gel and solid-state route. Citric acid and ethylenediaminetetraacetic acid (EDTA), employed as the chelating agents, were added to the aqueous solutions of metal nitrates. X-ray diffraction (XRD) and photoluminescent spectra techniques (PL) were used to characterize the resultant powders. The results indicated the obtained SrMoO4:Eu3+ phosphors were fine powders with a particle size of 50 nm. The effects of synthesizing conditions were also investigated and optimized, which included the synthesis temperature and the activator concentration on the luminescent intensity. Compared with SrMoO4:Eu3+ phosphors prepared by Solid-state reaction SrMoO4:Eu3+ phosphors prepared by combining sol-gel and solid-state route showed appropriate particle size and a higher emission intensity.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.