Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
We present results of deep-level transient spectroscopy investigations of defects in a GaN-based heterostructure of a blue-violet laser diode, grown by plasma-assisted molecular beam epitaxy on a bulk GaN substrate. Three majority-carrier traps, T1 at E_C - 0.28 eV, T2 at E_C - 0.60 eV, and T3 at E_V + 0.33 eV, were revealed in deep-level transient spectra measured under reverse-bias conditions. On the other hand, deep-level transient spectroscopy measurements performed under injection conditions, revealed one minority-carrier trap, T4, with the activation energy of 0.20 eV. The three majority-carrier traps were revealed in the spectra measured under different reverse-bias conditions, suggesting that they are present in various parts of the laser-diode heterostructure. In addition, these traps represent different charge-carrier capture behaviours. The T1 trap, which exhibits logarithmic capture kinetics, is tentatively attributed to electron states of dislocations in the n-type wave-guiding layer of the structure. In contrast, the T2, T3, and T4 traps display exponential capture kinetics and are assigned to point defects.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.