Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
One of the most important and promising materials from metal oxides is ZnO with specific properties for near UV emission and absorption optical devices. The properties of ZnO thin films strongly depend on the deposition method. Among them, pulsed laser deposition (PLD) plays an important role for preparing various kinds of ZnO films, e.g. doped, undoped, monocrystalline, and polycrystalline. Different approaches - ablation of sintered ZnO pellets or pure metallic Zn as target material are described. This contribution is comparing properties of ZnO thin films deposited from pure Zn target in oxygen atmosphere and those deposited from sintered ZnO target. There is a close connection between final thin film properties and PLD conditions. The surface properties of differently grown ZnO thin films are measured by secondary ion mass spectrometry (SIMS), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Furthermore, different approaches - ablation of sintered ZnO pellet or pure metallic Zn as target materials are described. The main results characterize typical properties of ZnO films versus technological parameters are presented.
Open Physics
|
2008
|
vol. 6
|
issue 2
327-331
EN
The dependence of the ablation rate of aluminium on the fluence of nanosecond laser pulses with wavelengths of 532 nm and respectively 1064 nm is investigated in atmospheric air. The fluence of the pulses is varied by changing the diameter of the irradiated area at the target surface, and the wavelength is varied by using the fundamental and the second harmonic of a Q-switched Nd-YAG laser system. The results indicate an approximately logarithmic increase of the ablation rate with the fluence for ablation rates smaller than ∼6 μm/pulse at 532 nm, and 0.3 μm/pulse at 1064 nm wavelength. The significantly smaller ablation rate at 1064 nm is due to the small optical absorptivity, the strong oxidation of the aluminium target, and to the strong attenuation of the pulses into the plasma plume at this wavelength. A jump of the ablation rate is observed at the fluence threshold value, which is ∼50 J/cm2 for the second harmonic, and ∼15 J/cm2 for the fundamental pulses. Further increasing the fluence leads to a steep increase of the ablation rate at both wavelengths, the increase of the ablation rate being approximately exponential in the case of visible pulses. The jump of the ablation rate at the threshold fluence value is due to the transition from a normal vaporization regime to a phase explosion regime, and to the change of the dimensionality of the hydrodynamics of the plasma-plume.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.