Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
A body of evidence accumulated over the past decade suggests that epigenetic mechanisms play an essential role in maintaining important cellular functions. Changes in epigenetic patterns (mainly DNA hyper- and hypomethylation and, more recently, histone modifications) may contribute to the development of cancer. Aberrant epigenetic events expand thorough tumor progression from the earliest to latest stages, therefore they can serve as convenient markers for detection and prognosis of cancer. The potential reversibility of epigenetic states in the tumor cell is an attractive target for cancer therapy. Much of our current knowledge on epigenetic alternations in cancer comes from studies on gastrointestinal malignancies, mainly on colorectal cancer, which currently serves as a model for epigenetic tumorigenesis. This review summarizes the current knowledge of epigenetic changes in gastrointestinal cancers and how this relates directly to disease progression and prognosis.
EN
We report on a 13-month-old girl showing dysmorphic features and a delay in psychomotor development. She was diagnosed with a balanced de novo translocation 46,X,t(X;13)(p11.2;p13) and non-random inactivation of the X chromosome. FISH analysis, employing the X chromosome centromere and XIST-region-specific probes, showed that the XIST locus was not involved in the translocation. Selective inactivation of paternal X, which was involved in translocation, was revealed by the HUMARA assay. The pattern of methylation of 5 genes located within Xp, which are normally silenced on an inactive X chromosome, corresponded to an active (unmethylated) X chromosome. These results revealed that in our proband the X chromosome involved in translocation (Xt) was preferentially inactivated. However, genes located on the translocated Xp did not include XIST. This resulted in functional Xp disomy, which most probably accounts for the abnormal phenotype in our patient.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.