Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
An important feature of lyotropic liquid crystals is the self-assembly of the amphiphilic molecules as supermolecular structures. We have studied the formation of nematic liquid crystal phase in solutions containing lysozyme amyloid fibrils and magnetic nanoparticles using oscilloscopic method. Interaction of fibrils with magnetic nanoparticles under the external magnetic field resulted in fibril re-arrangement. The analysis of the obtained results suggests that the decrease in conductivity of solutions in presence of magnetic field is due to decrease of the ion mobility caused by re-arrangement of structures in the solution. The obtained results allow determination of the optimum ratio of the components which can lead to preparation of solutions with a more ordered structure in presence of magnetic field.
EN
Functionalised magnetic nanoparticles composed of Fe_3O_4 particles stabilised by sodium oleate and subsequently modified with dextran (MFDEX) were prepared by the co-precipitation method. Their morphology and particle size distribution were observed by scanning electron microscopy and photon cross correlation spectroscopy. In order to confirm the modification of magnetite surface with dextran physical techniques, including infrared spectroscopy, thermal analysis, and magnetic measurement, were used. Finally, the effect of MFDEX on amyloid fibrillar aggregates of human insulin and hen egg white lysozyme, typical amyloidogenic proteins, was investigated. In vitro interaction of MFDEX with protein amyloid fibrils resulted into destruction of amyloid aggregates. The anti-amyloid activity makes MFDEX of potential interest as therapeutic agent against amyloid-related diseases.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.