Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Cyclic GMP is a key messenger molecule in several cellular processes. It is also an important modulator of immune response. In this paper we summarize current data concerning regulatory and modulatory function of cGMP in the cells of immune system. Metabolism of the nucletide as well as its role in processes such as cell proliferation, differentation, chemotaxis and release of mediators are described. The fields of future research are indicated as well.
EN
Numerous reports indicate that cyclic 3',5' guanosine monophosphate (cGMP) is involved in the regulation of immune processes. However, the mechanisms responsible for the synthesis of this nucleotide and its signaling pathways in immune cells are still not well recognized. The aim of our study was to establish: 1) which form of guanylyl cyclase synthesizes cGMP in murine lymphoid organs and 2) whether the same organs express the isoforms PKG1alpha and/or PKG1beta of protein kinase G, known as a possible target for synthesized cGMP. Cells isolated from thymus, lymph nodes, and spleen were treated with activators (SNP, ANP, CNP, STa) of soluble or particulate cyclases. Sodium nitroprusside (SNP) elevated intracellular cGMP 2-fold in thymic and lymph node cells and about 10-fold in spleen cells. Atrial natriuretic peptide (ANP) caused modest but statistically significant increases of cGMP in cells of all the organs. Additionally, spleen cells elevated their cGMP content about 2-fold in response to C-type natriuretic protein (CNP). In cellular homogenates of all the analyzed organs, the antibody anti-PKG1beta stained the 78 kDa band corresponding to the molecular mass of PKG1. Only homogenates of spleen cells were stained by the antibody recognizing PKG1alpha. Our results indicate that in all the investigated organs, cGMP may be synthesized mainly by soluble guanylyl cyclases in response to nitric oxide. The modest increase of cGMP upon stimulation by ANP suggests that in all these organs either exist only a small subpopulation of cells that express particulate cyclase GC-A or GC-A is expressed at very low level. In spleen cells, however, cyclase GC-B appears to be the more active enzyme. Elevated cGMP concentration may in turn activate PKG1beta in thymus, lymph node, and spleen cells and also PKG1alpha in spleen cells.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.