Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
|
|
issue 2
399-401
EN
The magnetometry and the magnetic force microscopy are used to study the influence of the magnetic domain size on the flux pinning in a superconducting/ferromagnetic bilayer (SFB), in which the S layer is niobium and the F layer is a Co/Pd multilayer with perpendicular magnetic anisotropy. The domain size is pre-defined using the angle-dependent demagnetization. The enhancement of pinning is found to be the strongest, up to a factor of 6, for narrow domains and small magnetic fields. This result differs from the behavior observed in the SFB in which the F layer is Co/Pt. The difference may be attributed to the degree of the disorder in the domain pattern.
|
|
vol. 126
|
issue 4a
A-123-A-127
EN
Using the magnetoresistance measurements we study the phase transition line and the activation energy for vortex pinning in superconductor/ferromagnet bilayer, built of a ferromagnetic Co/Pd multilayer with perpendicular magnetic anisotropy, and a niobium film, with insulating layer in-between to eliminate proximity effect. The domain width is reversibly pre-defined using the angle-dependent demagnetization. We find that the enhancement of the activation energy for vortex pinning by magnetic domains is rather modest, by a factor of about 2.1. We attribute this to large domain width, and large dispersion of the domain width in this bilayer.
EN
The magnetic properties of La_{1.85}Sr_{0.15}CuO_4 doped with Ni was investigated in the field up to 5 T and in the temperature range from 2 K to 400 K using both dc and ac techniques. For Ni content larger than 0.05 the system exhibits irreversibility of low-field susceptibility χ(T) below a certain temperature depending on y and a cusp at T_{g} in χ(T) measured after zero-field cooling. The decay of remnant magnetization below T_{g} with time is described by a stretched-exponential function. In accordance with scaling theory, all the χ(T) data for y = 0.50 sample taken in the vicinity of T_{g} at different fields collapse onto two separate curves when plotted as q|t|^{-β} vs. B^2 |t|^{-β - γ}, where q is the spin-glass order parameter, t = (T - T_{g})/T_{g}, and β and γ are the critical exponents. All these features taken together reveal existence of spin-glass phase below T_{g}. Variation of T_{g} with y is linear below y = 0.25 and T_{g} extrapolates to 0 K for y → 0 what strongly suggests that spin-glass phase extends into superconducting region of the phase diagram.
EN
We use pulsed laser deposition to grow YBa_2Cu_3O_{7-δ} (YBCO) superconducting films for microwave applications. The films are grown on R-cut sapphire substrates, with CeO_2 buffer layers, which are re-crystallized at high temperature prior to YBCO growth. Using the atomic force microscopy (AFM) and X-ray diffractometry we determine the optimal temperature for recrystallization (1000°C) and the optimal buffer layer thickness (30 nm). The properties of YBCO films of various thickness, grown on the optimized CeO_2 buffer layers, are studied using several methods, including AFM, magnetooptical imaging, and transport experiments. The YBCO film roughness is found to increase with the increasing film thickness, but the magnetic flux penetration in the superconducting state remains homogeneous. The superconducting parameters (the critical temperature and the critical current density) are somewhat lower than the similar parameters for YBCO films deposited on mono-crystalline substrates.
EN
In this work we study the growth, by pulsed laser deposition, of YBa_2Cu_3O_{7-δ} (YBCO) films on the CeO_2-buffered R-cut sapphire substrates, with the buffer layer recrystallized prior to the deposition of superconductor. We find that the superconducting critical temperature and the critical current density of the films are very close to similar parameters for the YBCO films grown on lattice-matched single crystalline substrates. It appears that the structural defects in the buffer layer affect the microstructure of YBCO films, resulting in high values of the critical current density, suitable for applications.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.