Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

TheGABPB1gene A/G polymorphism in Polish rowers

100%
EN
Nuclear respiratory factor 2 (NRF2), also referred to as the GA-binding protein (GABP) transcription factor, is a key transcriptional activator of many nuclear genes which encode a wide range of mitochondrial enzymes. The variants of the GABPB1 gene encoding the beta1 subunit of NRF2 protein have been associated with physical performance, particularly endurance. The aim of this study was to confirm the possible importance of the A/G polymorphism (rs7181866) in intron 3 of the GABPB1 gene in Polish rowers. The study was carried out on 55 Polish rowers and sedentary individuals, to evaluate the possible relationships between genotype and physical performance. DNA was extracted from buccal cells donated by the subjects. Genotyping was carried out by PCR-RFLP. The results revealed that the frequency of the GABPB1 A/G genotype (89.09% AA; 10.91% AG, 0% GG; vs. 97.69% AA; 2.31% AG; 0.00% GG) %; P = 0.012) and G allele (5.50% vs. 1.17%; P = 0.014) was significantly higher in the rowers compared to controls. The results suggest that the GABPB1 gene can be taken into consideration as a genetic marker in endurance athletes. However, these conclusions should be supported with more experimental studies on other GABPB1 polymorphisms and other genes in elite endurance athletes.
EN
TThe GSTP1 c.313A>G polymorphism is a candidate to explain some of the individual differences in cardiorespiratory fitness phenotypes’ responses to aerobic exercise training. We aim to explore the association between the GSTP1 c.313A>G polymorphism and the response to low-high impact aerobic exercise training. Sixty-six Polish Caucasian women were genotyped for the GSTP1 c.313A>G polymorphism; 62 of them completed 12-week aerobic (50-75% HR max ) exercise training and were measured for selected somatic features (body mass and BMI) and cardiorespiratory fitness indices – maximal oxygen uptake (VO 2max , maximum heart rate (HR max ), maximum ventilation (V E max ) and anaerobic threshold (AT) – before and after the training period. Two-factor analysis of variance revealed a main training effect for body mass reduction (p=0.007) and BMI reduction (p=0.013), improvements of absolute and relative VO 2max (both p<0.001), and increased V E max (p=0.005), but not for changes in fat-free mass (FFM) (p=0.162). However, a significant training x GSTP1 c.313A>G interaction was found only for FFM (p=0.042), absolute and relative VO 2max (p=0.029 and p=0.026), and V E max (p=0.005). As the result of training, significantly greater improvements in VO 2max , V E max and FFM were gained by the GG+GA group compared to the AA genotype group. The results support the hypothesis that heterogeneity in individual response to training stimuli is at least in part determined by genetics, and GSTP1 c.313A>G may be considered as one (of what appear to be many) target polymorphisms to influence these changes.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.