Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Metal sorption capacity of Chlorella kessleri and two strains of cyanobacteria (Aphanocapsa sp., Anabaena flos-aquae) was studied. It was found that among studied organisms, dead cells of C. kessleri were the most effective sorbents of Pb, Cu, Cd and Zn. They displayed the highest cation-exchange (Cd2+/H+) capacity and bound much more Cd and Zn at pH 7 than at pH 4. The optimum pH for sorption of Pb and Cu was 6. At pH 6, dead cells of C.kessleri could bind maximally about 37 mg Cd, 38 mg Zn, 21 mg Cu and 70 mg Pb per g of dry weight. Generally, algal dead cells (0.3 g dry wt dm^3) removed 50-70% of the metal ions from 0.01 mM solutions. A surplus of calcium and magnesium caused a slight decrease of Pb, Cu, Cd and Zn sorption.
EN
The impact of some organotin compounds (10-200 mg dm^3) on the planktonic cyanobacterium Synechocystis aquatilis was studied. The following order of toxicity of organotins tested to the cyanobacterium culture was found: DBTCl>TPTAclTBTCl? TPTCl>TMTCl. Chlorophyll a content in the culture seemed to be more susceptible to organotins than cyanobacterial growth. The inhibition of both parameters increased significantly with the increase of compound doses, time of exposure and decrease of initial culture density. After 96 h exposure, the chlorophyll a content in the cyanobacte-rium cultures of the initial density 56 mg dry wt dm^3 was reduced for 200 mg dm^3 of DBTCl, TBTCl and TPTCl by 70%, 50% and 20% respectively, while in the cultures of the lowest initial density (10 mg dry wt dm-3) by 90%, 75% and 50%, as compared to the organotin free controls.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.