Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In this paper, a modified nearest-neighbor regression method (kNN) is proposed to model a process with incomplete information of the measurements. This technique is based on the variation of the coefficients used to weight the distances of the instances. The case study selected for testing this algorithm was the photocatalytic degradation of Reactive Red 184 (RR184), a dye belonging to the group of azo compounds, which is widely used in manufacturing paint paper, leather and fabrics. The process is conducted with TiO2 as catalyst (an inexpensive semiconductor material, completely inert chemically and biologically), in the presence of H2O2 (with the role of increasing the rate of photo-oxidation), at different pH values. The final concentration of RR184 is predicted accurately with the modified kNN regression method developed in this article. A comparison with other machine learning methods (sequential minimal optimization regression, decision table, reduced error pruning tree, M5 pruned model tree) proves the superiority and efficiency of the proposed algorithm, not only for its results, but for its simplicity and flexibility in manipulating incomplete experimental data. [...]
EN
An optimization methodology based on neural networks and genetic algorithms was developed and used to optimize a real world process - an electro-coagulation process involving three pollutants at different concentrations: kaolin (250–1000 mg L−1), Eriochrome Black T solutions (50–200 mg L−1), and oil/water emulsion (1500–4500 mg L−1). Feed-forward neural networks using heterogeneous combination of transfer functions were developed, leading to good results in the validation stage (relative error about 8%). The parameters of the process (concentration of pollutant, time, pH0, conductivity and current density) were optimized handling the genetic algorithm parameters, in order to obtain a maximum removal efficiency for each pollutant. Therefore, the optimization methodology combines neural networks as modeling tools with genetic algorithms as solving method. Validation of the optimization results using supplementary experimental data reveals errors under 11%. [...]
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.