Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
The Finemet type amorphous alloys are well known as high frequency soft magnetic materials. They have good soft magnetic properties which are characterized by low coercive force and high permeability because of the lack of crystalline anisotropy. The structural stability of the amorphous ribbon of Finemet type modified by Mn, Al and Cr prepared by melt-spinning process was studied using differential scanning calorimetry and dynamical mechanical analysis. With increase of the crystalline portion in the sample, the Curie transition is shifted to the higher temperatures. The magnetic relaxation processes at frequencies above 10⁴ Hz were detected by mass magnetic susceptibility measurement.
EN
The Ni-Ti-Zr metallic glasses are due to their known shape memory properties promising alloys e.g. for micromechanical applications. In this paper structure and structure stability of one particular alloy Ni₆₀Ti₂₅Zr₁₅ at.% were examined by means of X-ray diffraction and transmission electron microscopy while magnetic properties were ascertained by vibrating-sample magnetometer with maximal applied field of 100 kA/m in the temperature range of 300-1073 K.
3
84%
EN
Metallic glasses, in contrast to its crystalline counterparts, exhibit unique mechanical and structural properties, which make them attractive for practical applications. Especially Ni-Ti-Zr metallic glass is a promising alloy for micromechanical systems because of its known shape memory properties. Shape memory effect is connected with structural phase transformation. In this paper, the ambient-temperature-structure of Ni-Ti-Zr metallic glass is investigated using transmission electron microscopy and synchrotron X-ray diffraction, the surface and chemical analysis is documented using scanning electron microscopy. Thermal stability of the alloy has been determined using differential scanning calorimetry.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.