The notions of centrifugal (centripetal) and Coriolis' velocities and accelerations are introduced and considered in spaces with affine connections and metrics [ $$ (\bar L_n ,g) $$ -spaces] as velocities and accelerations of flows of mass elements (particles) moving in space-time. It is shown that these types of velocities and accelerations are generated by the relative motions between the mass elements. They are closely related to the kinematic characteristics of the relative velocity and relative acceleration. The centrifugal (centripetal) velocity is found to be in connection with the Hubble law. The centrifugal (centripetal) acceleration could be interpreted as gravitational acceleration as has been done in the Einstein theory of gravitation. This fact could be used as a basis for workingout new gravitational theories in spaces with affine connections and metrics.
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.