Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
Open Physics
|
2013
|
vol. 11
|
issue 4
518-525
EN
The shallow water equations have wide applications in ocean, atmospheric modeling and hydraulic engineering, also they can be used to model flows in rivers and coastal areas. In this article we obtained exact solutions of three equations of shallow water by using $\frac{{G'}} {G} $-expansion method. Hyperbolic and triangular periodic solutions can be obtained from the $\frac{{G'}} {G} $-expansion method.
EN
This article presents a numerical approximation of the initial-boundary nonlinear coupled viscous Burgers’ equation based on spectral methods. A Jacobi-Gauss-Lobatto collocation (J-GL-C) scheme in combination with the implicit Runge-Kutta-Nyström (IRKN) scheme are employed to obtain highly accurate approximations to the mentioned problem. This J-GL-C method, based on Jacobi polynomials and Gauss-Lobatto quadrature integration, reduces solving the nonlinear coupled viscous Burgers’ equation to a system of nonlinear ordinary differential equation which is far easier to solve. The given examples show, by selecting relatively few J-GL-C points, the accuracy of the approximations and the utility of the approach over other analytical or numerical methods. The illustrative examples demonstrate the accuracy, efficiency, and versatility of the proposed algorithm.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.