Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The subject of the investigation was the model solution containing 50 g/dm³ waste light ends from PVC production, dissolved in the ethanol-water (1:1) mixture. The main components of light ends were as follows: trichloromethane, tetrachloromethane, and chloroderivatives of ethane. Granular ferric-chromic catalyst (TZC 3/1) was used in the investigation. The temperature range applied in experiments was 400-600ºC and the contact time was 0.27 s. Gaseous products of the reaction were analysed in order to determine among others concentration of chlorine, formaldehyde, oxygen, carbon monoxide and dioxins. The content of total organic carbon (TOC), chloride ions and formaldehyde was determined in a condensate. Oxidation of the mixture proceeded in the all temperature range with high efficiency in regard to initial TOC value of the solution. The concentration of dioxins in the combustion gases obtained in the process carried out in temperature 450ºC amounted to 0.021-0.027 ng TEQ/m3, and was significantly lower than the admissible value of 0.1 ng TEQ/m3. Congeners of polychlorinated dibenzofuranes (PCDFs) predominated in the combustion gases. Tested catalyst did not undergo deactivation during 150 h substrate oxidation.
PL
Przedmiot badań stanowił roztwór modelowy zawierający 50 g/dm3 frakcji lekkiej odpadów z produkcji PCW w mieszaninie etanol-woda (1:1). Głównymi składnikami odpadu były: trichlorometan, tetrachlorometan i chloropochodne etanu. Natężenie przepływu powietrza wynosiło 300 dm³/h, substratu 16 g/h, a czas kontaktu 0,27 s. Zakres temperatury doświadczeń wynosił 400-600ºC. Stosowano ziarnisty katalizator żelazowo-chromowy TZC 3/1. W gazowych produktach reakcji oznaczano m.in. stężenie chloru, formaldehydu, tlenu i tlenku węgla, natomiast w kondensacie zawartość ogólnego węgla organicznego (OWO), jonów chlorkowych, formaldehydu i dioksyn. Utlenienie substratu zachodziło w zakresie temperatury 400-600°C bardzo wydajnie względem początkowego OWO tych roztworów. Stężenie PCDD/Fs w spalinach w procesie realizowanym w temperaturze 450ºC wynosiło 0,021-0,027 ngTEQ/m3 i było znacznie mniejsze od wartości dopuszczalnej 0,1 ngTEQ/m3. W spalinach dominowały kongenery polichlorowanych dibenzofuranów (PCDFs). Badany katalizator nie uległ dezaktywacji w okresie 150 h utleniania substratu.
EN
Tetrachloromethane (TCM) and 1,1,2,2-tetrachloroethane (TChE) were oxidized in the temperature range from 300 to 600°C and at contact time of 0.36 s. The following catalysts were applied during the process: the granular one - platinum (0.12%) at the TiO2-SiO2 carrier, platinum ZChO-80 (0.15%) at γ-Al2O3 carrier, palladium (1%) at γ-Al2O3 carrier and monolithic platinum-rhodium catalyst (Pt - 0.09% and Rh - 0.04%) at the cordierite carrier.The substrates were oxidized in the presence of the above mentioned catalysts with various efficiencies depending on the molecular structure and the type of the catalyst. Palladium contact appeared to be the most active among the others. In the presence of this catalyst, total oxidation of TCM and TChE proceeded at the temperature of 425 and 500°C, respectively. The content of PCDD/Fs in gaseous products obtained during the oxidation of both substrates, was significantly lower than the admissible value of the toxicity equivalent (0.1 ng TEQ/m3).
3
64%
EN
Ternary CuO-ZrO2-Al2O3 catalysts promoted by palladium or gold were prepared and tested in CO hydrogenation reaction at 260°C under elevated pressure (4.8 MPa). The promotion effect of palladium or gold addition on the physicochemical and catalytical properties of CuO-ZrO2-Al2O3 catalysts in methanol synthesis (MS) was studied. The catalysts were characterized by BET, XRD, TPR-H2, TPD-NH3 methods. The BET results showed that the ternary system CuO-ZrO2-Al2O3 had the largest specific surface area, cumulative pore volume and average pore size in comparison with the promoted catalysts. The yield of methanol can be given through the following sequence: 5%Pd/CuO-ZrO2-Al2O3 > CuO-ZrO2-Al2O3 > 2%Au/CuO-ZrO2-Al2O3. We also found that the presence of gold or palladium on catalyst surface has strong influence on the reaction selectivity. The high selectivity of gold doped ternary catalyst is explained by the gold-oxide interface sites created on the catalyst surface and the acidity of those systems. The higher selectivity to methanol in the case of the palladium catalyst is explained by the spillover effect between Pd and CuO.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.