Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Movements that are both variable and optimal

100%
EN
This brief review addresses two major aspects of the neural control of multi-element systems. First, the principle of abundance suggests that the central nervous system unites elements into synergies (co-variation of elemental variables across trials quantified within the framework of the uncontrolled manifold hypothesis) that stabilize important performance variables. Second, a novel method, analytical inverse optimization, has been introduced to compute cost functions that define averaged across trials involvement of individual elements over a range of values of task-specific performance variables. The two aspects reflect two features of motor coordination: (1) using variable solutions that allow performing secondary tasks and stabilizing performance variables; and (2) selecting combinations of elemental variables that follow an optimization principle. We suggest that the conflict between the two approaches (a single solution vs. families of solutions) is apparent, not real. Natural motor variability may be due to using the same cost function across slightly different initial states; on the other hand, there may be variability in the cost function itself leading to variable solutions that are all optimal with respect to slightly different cost functions. The analysis of motor synergies has revealed specific changes associated with atypical development, healthy aging, neurological disorders, and practice. These have allowed formulating hypotheses on the neurophysiological mechanisms involved in the synergic control of actions.
EN
We explored synergies between two legs and two subjects during preparation for a long jump into a target. Synergies were expected during one-person jumping. No such synergies were expected between two persons jumping in parallel without additional contact, while synergies were expected to emerge with haptic contact and become stronger with strong mechanical contact. Subjects performed jumps either alone (each foot standing on a separate force platform) or in dyads (parallel to each other, each person standing on a separate force platform) without any contact, with haptic contact, and with strong coupling. Strong negative correlations between pairs of force variables (strong synergies) were seen in the vertical force in one-person jumps and weaker synergies in two-person jumps with the strong contact. For other force variables, only weak synergies were present in one-person jumps and no negative correlations between pairs of force variable for two-person jumps. Pairs of moment variables from the two force platforms at steady state showed positive correlations, which were strong in one-person jumps and weaker, but still significant, in two-person jumps with the haptic and strong contact. Anticipatory synergy adjustments prior to action initiation were observed in oneperson trials only. We interpret the different results for the force and moment variables at steady state as reflections of postural sway.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.