Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Trampoline flight time is a recent addition to Olympic scoring and was sufficient in weight to displace a formed medal winner from a podium placement at the 2012 Olympics. The aim of our study was to examine different warm-up routines on trampoline flight time. We examined ten elite, female trampolinists (mean ± SD: age 19.2 ±5.4 y) who performed six different warm-up routines in a randomised, cross-over, counter-balanced manner: (a) static stretching (STAT, control), (b) STAT+10 trampoline bounces, (c) dynamic stretching (DYN), (d) DYN+10 trampoline bounces, (e) DYN+Drop jumps (DYN+DJ) and (f) DYN+isometric mid-thigh pulls (DYN+IP). Data were analysed using general linear models, Dunnett-HSU post-hoc tests vs. Control/STAT and magnitude based inferences vs. control. Our analysis demonstrated that total flight time following DYN 10 (17.29 ±0.52s, 83% likely beneficial, P < 0.002) was significantly longer versus STAT (16.59 ±0.49 s), with a trend toward significance for DYN (16.97 ±0.20 s; 22% likely beneficial, P = 0.077). The DYN-IP (14.04 ± 0.48 s) and DYN-DJ (14.15 ±0.66 s) produced the shortest vs. all warm-up forms (P < 0.005). To the contrary, the DYN+DJ and DYN+IP conditions were >99% likely to be detrimental to performance. Our results demonstrate a clear improvement in flight times when using a dynamic warm-up coupled with a trampoline specific bouncing task (DYN+10).
EN
Deer antler velvet (DAV) supplementation purportedly increases athletic performance; however, little data support this claim. The primary aim of our study is to examine DAV and exercise performance. We randomized 32 men (18–35 y) participating exclusively in resistance training (>4 y) to 10-weeks of randomly assigned, double blind, DAV (1350 mg, 2×/day) or placebo treatments. Primary outcomes included maximal aerobic capacity (VO2max), maximal strength (1RM; bench press and squat) and anaerobic cycling power. Secondary outcomes included comprehensive blood profiles and body composition. We used general linear models to determine changes following treatment. Eighteen participants (n = 9) completed the study with DAV participants showing significant improvements in VO2max (4.30 ±0.45 to 4.72 ±0.60 L/min, P < 0.04). The placebo and DAV groups increased bench press and squat 1RM (both, P < 0.04); yet, when expressed relative to body mass, only the DAV group showed significant bench press (4%) and squat (10%; both, P < 0.02). Neither group improved cycling performance or showed adverse changes in blood chemistries. We did observe a significant reduction in LDL-C (12%) accompanying DAV supplementation and both groups significantly reduced percent body fat (P < 0.05). Our results suggest that DAV may have ergogenic effects in men participating solely in resistance training.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.