Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
We report on the fabrication of all transparent heterojunction thin film diodes of the form glass/n-ZnO: Al/p-CuAlO2 produced by a combinatorial chemical and physical technique and on a study of their electro-optical properties. The n-ZnO: Al layer was deposited by a sol-gel-dip-coating process whereas the p-CuAlO2 layer was deposited by direct current sputtering techniques. The diode structure, with a total thickness of 1100 nm showed around 60% transmittance in the visible region. The current-voltage characteristics of the device showed a rectifying nature, with a low turn-on voltage around 0.8 V, having a rectification ratio > 50 at ± 2 V. The low turn-on voltage and moderate visible transmittance of the transparent diode indicate its potential application in the field of “Transparent” or “Invisible Electronics”.
EN
We propose a method for measuring the thickness of the exfoliated MoSe₂ layers deposited on Si/SiO₂ substrate, based on the reflectance measurements performed with laser light illumination at two different wavelengths: red and green from confocal microscope at room temperature. We demonstrate the correlation between the number of layers in a flake and the value of its relative reflection difference. We applied the transfer matrix method to calculate the reflectivity and verify our experimental results. The approach proposed by us allows for fast and automatic verification of the exfoliated MoSe₂ layers thickness on large areas of the substrate.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.