Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In the highlands of the country in which the study area found was affected by soil erosion and desertification. This problem on the environment includes loss of soil fertility, reduction of the depth of water body (lakes, ponds, reservoirs etc), high water turbidity, flood hazard problems etc. This study focus on mapping of soil erosion prone areas in South Gondar zone (area: 14604 sq km), which comprises of Blue Nile river basin and Tekeze river basins. This study leads where the most effective soil conservation strategies should focus in the area. Based on GIS with the integration of the Multi Criteria Decision Analysis (MCDA), an attempt was made to combine a set of factors (Land use, Soil, Slope, Topographic Wetness Index, Stream Power Index, Elevation, and Curvature) to have a fruitful decision to fulfil to the stated objective. Raster based pairwise comparison method considering seven soil erosion motivating parameters have been done in Arc GIS environments. MCDA is used to quantify the raster based qualitative spatial erosion hotspot area which produced through pairwise comparison. Raster based spatial model tells that out of total watershed area, 39.31 sq km (0.27%), 33.40 sq km (0.23%), 2358.12 sq km (16.15%), 11027.76 sq km (75.51%) and 1145.60 sq km (7.84%) areas are very high, High, Medium, Low and Very low prone to soil erosion respectively. This study will serve as insight to Basins/watershed decision maker and planners to alleviate soil erosion problems and its related hazards.
EN
Since the trends of adverse climate change and integrated urban water management have continued in the twenty-first century, governments and other institutions seek reliable predictions as water resource requirements arise. Although uncertainty is never cut off from the need for a probabilistic movement, through current developments in science and the technology of hydrological modeling on urban water management analysis, researchers can improve the ability to create realistic scenarios that will benefit the water sector it adapts to these changes. Model studies on the combined effects of climate change and the water sector have found that the change can be significant, depending on scenarios and the assumptions of climate change, as well as the degree of urban development. In this work, conceptual analysis of urban water management has been applied to several scenarios of climate change in order to obtain new insights and uncertainties.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.