Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In situ observation of AZ61 Mg alloy with 1 and 5 wt% of Al₂O₃ in the scanning electron microscopy was performed to study influence of the weight fraction of Al₂O₃ particles on the deformation and fracture mechanism during tensile test. Structure of the experimental materials was also analysed; microstructures were heterogeneous, with randomly distributed globular Al₂O₃ particles (average diameter of 25 nm) and Mg₁₇Al₁₂ intermetallic phase (average diameter of 0.4 μ m). It was shown that during tensile deformation the failure of Mg₁₇Al₁₂ particles and decohesion of the matrix-Al₂O₃ particles interphase boundary started simultaneously. Decohesion resulted from the different physical properties of matrix and Al₂O₃ particles. The influence of the Al₂O₃ weight fraction on the final fracture was evident; for material with 5 wt% of Al₂O₃, the fracture surface was approximately perpendicular to the loading direction and for material with 1 wt% of Al₂O₃ was at 45° angle. Fracture surface had transcrystalline ductile character.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.