Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In the paper the crystal structure of single crystal CMSX-4 blade casts, applied in high pressure turbine of aircraft engines was analyzed. The longitudinal section of blade, cast at withdrawal rate of 3 mm/min was used as a sample. During the conducted research, following X-ray diffraction methods were applied: EFG Ω-scan, Auleytner X-ray topography and analysis of diffraction reflex profile ("rocking curve"). The authors determined crystal orientation in entire blade casts on the basis of set criterion concerning values of angle α - deviation of [001] direction from the direction of cast withdrawal. Conclusions concerning the crystal structure quality of the blade were drawn based on results from three different research methods. Local changes in crystal orientation on the surface of blade cast, also areas with significant structure defect degree and the presence of internal stresses were characterized.
EN
In the paper turbine blades made from single crystal CMSX-4 superalloy were investigated by X-ray diffraction methods (topography, Ω-scan mapping) complemented by scanning electron microscopy observations. By the X-ray diffraction topography method several misorientation defects were visualized as well as dendrites arrangement. It was discussed that tip of the airfoil and thin walled area of the turbine blades located near the trailing edge can accumulate more growth defects than other airfoil part, due to the complex shape of the mould.
EN
The single crystal turbine blades made of CMSX-4 nickel-based superalloy were studied. The turbine blades were obtained by the Bridgman technique with withdrawal rate of 5 mm/min. The samples, cut-off from root part of blades and containing the fragment of the selector, were studied. The effect of selector geometry on the dendrites growth and defects formation in the selector-root area of the blade were analyzed. The Laue diffraction, scanning electron microscopy, and X-ray diffraction topography were applied. It was found that, during crystallization of the selector, the dendrite cores, after reaching the surface of mould, may bend, if the angle between dendrite cores and the mould surface was equal to 12°. When the angle was equal to 24° the growth of dendrites has been stopped. It can be stated that the defects, which appeared in the selector were inherited by the root part.
EN
The creep-rupture tests were performed on a single crystal rods made of CMSX-4 superalloy obtained at withdrawal rates of 3 and 5 mm/min. After the rupture the microstructure and fracture surface were examined and correlated with X-ray crystal rotation measurements by the Ω-scan method. The conclusions about the crystal lattice rotation during creep test were provided.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.