Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 6

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
|
2002
|
vol. 49
|
issue 2
501-507
EN
The present work was aimed to obtain information about age-dependent changes of γ-glutamyltransferase (GGT) activity and the levels of non-protein sulfhydryl compounds (NPSH) in rat kidneys. In addition, protein-bound cysteine (PB-Cys), sulfane sulfur compounds and reactive oxygen species (ROS) were estimated The results indicate that the activity of GGT and NPSH levels in the kidneys are reduced with age. At the same time, a significant increase in the level of protein-bound cysteine was observed. Simultaneously, the content of sulfane sulfur compounds was increased in the group of the oldest animals. These findings indicate that the capacity for extracellular glutathione degradation and, in consequence, the availability of cysteine for intracellular glutathione biosynthesis may be impaired. The increased PB-Cys level indicates potentiation of the thiolation reaction, i.e. development of protein-mixed disulfides. These results reveal age dependent disturbances in the thiol-disulfide equilibrium in the kidneys which leads to an imbalance between pro- and antioxidatory processes.
EN
The redox status of plasma thiols can be a diagnostic indicator of different pathological states. The aim of this study was to identify the age dependent changes in the plasma levels of total, free and protein bound glutathione, cysteine and homocysteine. The determination was conducted in plasma of three groups of rats: 1) young (3-month-old), 2) middle aged (19-month-old), and 3) old (31-month-old). Total levels of glutathione, cysteine and homocysteine and their respective free and protein-bound fractions decreased with age. The only exception was a rise in free homocysteine concentration in the middle group, which indicates a different pattern of transformations of this thiol in plasma. The drop in the level of protein-bound thiols suggests that the antioxidant capacity of plasma diminishes with age, which, consequently, leads to impaired protection of -SH groups through irreversible oxidation. The plasma sulfane sulfur level also declines with age, which means that aging is accompanied by inhibition of anaerobic sulfur metabolism.
6
62%
Acta Biochimica Polonica
|
1988
|
vol. 35
|
issue 4
307-317
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.