Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The paper describes the results of developing a new technology of precision application of powder coating multifunctional systems to protect surfaces of industrial products using the microplasma material processing complex with the assistance of an industrial robot. The choice of components for developing the multifunctional powder coating systems and the trajectory of the plasma source and processing modes is made on the basis of optimized condition identified by initial experimentation and mathematical modelling. The use of a robot with a programmable controller provides high accuracy and performance of coating deposition onto the parts with a complex shape. The application of this technology allows obtaining multifunction systems of powder coatings with a predicted nanostructure and a complex set of properties such as microhardness and corrosion resistance. These systems are designed to protect friction surfaces and cutting tools, as well as to protect and restore the surface of components operating in corrosive environments and at high temperatures.
EN
This paper considers the problem of finding the temperature field in two-layer metallic materials heated by a moving source of radiation. It describes developed by the authors numerical method for solving the problem of heating a two-layer plate by a moving axially symmetric surface heat source with regard to the function of distribution of the power density of the beam for which the program of computation in C^{++} was implemented. The calculation results were used for selecting the optimal parameters (speed and power density of the source) of modifying radiation of protective powder coatings on steel substrates.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.