Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Typical commercial restorative dental compositions in the form of medical resins contain in-organic fillers, multifunctional methacrylates and photoinitiators. The currently used resins for direct composite restoratives have been mainly based on acrylic chemistry to this day. The main problem with the application and radiation curing process is the shrinkage of photoreactive dental materials during and after UV curing. Shrinkage of restorative radiation curable dental composites is a phenomenon of polymerization shrinkage, typical behavior of multifunctional methacrylates during the polymerization process. The important factors in curing of dental composites are: the kind and concentration of the used methacrylate, its functionality, double bond concentration, the kind and concentration of the added photoinitiator and UV dose emitted by the UV-lamp. They are investigated multifunctional 1,3-butanediol dimethacrylate (1,3-BDDMA), diethylene glycol dimethacrylate (DEGDMA), triethylene glycol dimethacrylate (TEGDMA), trimethylolpropane trimethacrylate (TMPTMA), 2,2-bis-[4-(2-hydroxy-3-methacryxloyloxypropyl) phenyl]propane (Bis-GMA), ethoxylated Bis-GMA (EBPDMA) and dodecandiol dimethacrylate (DDDMA). Reduction of polymerization shrinkage of restorative dental compositions is at the moment a major problem of dental technology. This problem can be solved through an application of photoreactive non-tacky multifunctional methacrylates in the investigated dental adhesive fillings.
2
100%
EN
The use of acrylic pressure-sensitive adhesives (PSAs) is increasing in a variety of industrial fields. They have been applied in the manufacture of mounting tapes, self-adhesive labels, protective films, masking tapes, splicing tapes, carrier-free tapes, sign and marking films, and in diverse medical products, such as pads or self-adhesive bioelectrodes. In this study, the application of SiO2 nanoparticles in acrylic PSA was investigated. The properties of the newly synthesized and modified PSA were evaluated via the tack, peel adhesion, shear-strength and shrinkage. It has been found that the nanotechnologically-reinforced systems consisting of monodisperse non-agglomerated SiO2 nanoparticles and self-crosslinked acrylic PSAs showed a great enhancement in tack, peel adhesion, shear resistance and shrinkage, without showing the disadvantages known to result from the use of other inorganic additives. In this paper we evaluate the performance of SiO2 nanoparticles with a size of about 30 nm as inorganic filler into the synthesized solvent-borne acrylic PSA.
EN
This manuscript describes dental compositions contain in-organic fillers, multifunctional methacrylates and photoinitiators. The main problem by application and UV curing process is the shrinkage of photoreactive dental materials during and after UV curing process. Total shrinkage of UV curable dental composites is a phenomenon of polymerization shrinkage, typical behavior for multifunctional methacrylates during polymerization process. The important factors by curing of dental composites are: kind and concentration of used methacrylates, their functionality, double bond concentration, kind and concentration of added photoinitiator and UV dose. They are investigated UV-curable dental compositions based on 2,2-bis-[4-(2-hydroxy-3-methacryxloyloxypropyl)phenyl]propane (Bis-GMA) and containing such multifunctional monomers as 1,3-butanediol dimethacrylate (1,3-BDDMA), diethylene glycol dimethacrylate (DEGDMA), tetraethylene glycol dimethacrylate (T3EGDMA), trimethylolpropane trimethacrylate (TMPTMA), polyethylene glycol 200 dimethacrylate (PEG200DA). Reduction of polymerization shrinkage of dental compositions is at the moment a major problem by dental technology.
EN
UV-crossinkable pressure-sensitive adhesives (PSA) materials are called, in the adhesives trade photoreactive self-adhesive. UV-crosslinkable PSAs are designed after the UV-initiated crosslinking reaction to stick to almost any surface by a simple contact under light pressure. This special class of adhesives does not undergo any physical transformation or chemical reaction during the bonding process. Because of the rheological properties the adhesive must be fi nely tuned for the application, combining a carefully chosen polymer architecture and monomer composition with the proper addition of small additives called photoinitiators. The best way is using the unsaturated copolymerizable photoinitiators and their direct incorporation into polymer chain during the polymerization process. Progress in the coating technology and the development of novel photoreactive acrylic adhesives will open the door to new applications and an extended market penetration of UV-crosslinkable acrylic adhesive raw materials containing unsaturated copolymerizable photoinitiators incorporated into the polymer backbone. Photoreactive UV-crosslinkable acrylic PSA are characterized by good tack, good adhesion, excellent cohesion and very low shrinkage.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.