Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
This article describes results of a recent study of SOFC (Solid Oxide Fuel Cell) material properties using a numerical tool. The created model was validated against experimental data collected for two different solid oxide fuel cells. With focus on ionic and electronic conductivities, temperature influence was investigated. Results are presented, compared with available data, and discussed. Model of a micro-CHP (Combined Heat and Power) unit based on a SOFC stack was used for evaluation of system performance with different cells. On-site generated bio-syngas was considered as a fuel fed for the unit. The overall system efficiency was analyzed using an Aspen HYSYS modeling environment. Properties of two generic electrolyte materials were implemented in the models for evaluation of a co-generative unit operation. Electrical and overall efficiencies of systems based on those cells were compared and differences were observed. Micro-scale power units with fuel cells are a promising technology for highly efficient distributed cogeneration. As it was concluded, selection of a proper cell is crucial to assure high system efficiency. [...]
EN
Solid oxide fuel cell (SOFC) is an electric generator, operating based on electrochemical reaction converting gaseous fuel to electricity and heat. It is characterized by the high electrical efficiency of up to 70% with cogeneration and negligible emission of pollutants. Syngas from the biomass gasification is considered to be a possible fuel for solid oxide fuel cell systems. However, high level of contaminants such as H2S, HCl, alkali metals, tars and particulates, in addition to possibility of carbon deposition and high temperature gradients due to internal reforming of hydrocarbons requires cleaning and conditioning of the syngas stream. The current status of the effect of contaminants on the SOFC performance has been reviewed and effects of single contaminants (H2S, HCl) has been tested. It has been found that anode supported solid oxide fuel cell (AS-SOFC) with Ni/YSZ cermet anode can tolerate up to 1 ppm H2S and up to 10 ppm HCl without significant performance degradation. [...]
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.