Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
trans-[Co(py)4Cl2]Cl·6H2O, mer-[Co(py)3Cl3] and mer-[Co(py)3(CO3)Cl] were studied by UV-Vis, far-IR and 1H, 13C, 15N NMR. The formation of Co-N bonds lead to variable in sign and magnitude changes of 1H NMR chemical shifts, heavily dependent on proton position, coordination sphere geometry and character of auxiliary ligands. 13C nuclei were deshielded upon Co(III) coordination, while 15N NMR studies exhibited ca. 85–110 ppm shielding effects (ca. 15–25 ppm more expressed for nitrogens trans to N than trans to Cl or O). 13C and 15N CPMAS spectra revealed a slight inequivalency of formally identical Co-py bonds in trans-[Co(py)4Cl2]Cl·6H2O and mer-[Co(py)3Cl3], suggesting for the latter complex an existence of distortion isomers. In chloroform, a spontaneous trans-[Co(py)4Cl2]Cl → mer-[Co(py)3Cl3] + py reaction was monitored by 1H NMR and UV-Vis. This process of py → Cl substitution allowed the design of a more convenient and efficient method of mer-[Co(py)3Cl3] preparation. [...]
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.