Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 9

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Physics
|
2008
|
vol. 6
|
issue 2
332-343
EN
A new approach for determination of refractive index dispersion n(λ) (the real part of the complex refractive index) and thickness d of thin films of negligible absorption and weak dispersion is proposed. The calculation procedure is based on determination of the phase thickness of the film in the spectral region of measured transmittance data. All points of measured spectra are included in the calculations. Barium titanate thin films are investigated in the spectral region 0.38–0.78 μm and their n(λ) and d are calculated. The approach is validated using Swanepoel’s method and it is found to be applicable for relatively thin films when measured transmittance spectra have one minimum and one maximum only.
EN
A blue-green emitting phosphor (Ba1.95, Eu0.05)ZnSi2O7: Bx3+ was prepared by combustion synthesis and an efficient blue-green emission under near-ultraviolet was observed. The luminescence, crystallinity and particle sizes were investigated by using luminescence spectrometry, X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The emission spectrum shows a single band centered at 503 nm, which corresponds to the 4f 65d 1 →4f 7 transition of Eu2+. The excitation spectrum is a broad band extending from 260 to 465 nm, which matches the emission of ultraviolet light-emitting diodes. The optical absorption spectra of the (Ba1.95, Eu0.05)ZnSi2O7: B0.063+ exhibited band-gap energies of 3.9 eV. The results showed that boric acid was effective in improving the luminescence intensity of (Ba1.95, Eu0.05)ZnSi2O7, and the optimum molar ratio of boric acid to zinc nitrate was about 0.06. The phosphor (Ba1.95, Eu0.05)ZnSi2O7: B0.063+ synthesized by combustion method showed 1.5 times improved emission intensity compared with that of the Ba1.95ZnSi2O7: Eu0.052+ phosphor under λex = 353 nm.
EN
We report results obtained from measurements of optical transmittance spectra carried out on a series of silicon thin films deposited by plasma-enhanced chemical vapour deposition (PECVD) from silane diluted with hydrogen. Hydrogen dilution of silane results in an inhomogeneous growth during which the material evolves from amorphous hydrogenated silicon (a-Si:H) to microcrystalline hydrogenated silicon (µc-Si:H). Spectral refractive indices and absorption coefficients were determined from transmittance spectra. The spectral absorption coefficients were used to determine the Tauc optical band gap energy, the B factor of the Tauc plots, E 04 (energy at which the absorption coefficient is equal to 104 cm−1), and the Urbach energy as a function of the hydrogen dilution. The results were correlated with microstructure, namely volume fractions of the amorphous and crystalline phase with voids, and with the grain size.
Open Physics
|
2007
|
vol. 5
|
issue 4
558-569
EN
In our study, the 1% mol Eu2+ doped Li2CaSiO4: B3+ phosphors were prepared by the combustion method as fluorescent material for ultraviolet, light-emitting diodes (UV-LEDs) used as a light source. The properties of Li2 (Ca0.99, Eu0.01) SiO4: B3+ phosphors with urea concentration, doping boric acid and a series of initiating combustion temperature were investigated. The crystallization and particle sizes of Li2 (Ca0.99, Eu0.01) SiO4: B3+ has been investigated by using powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). Luminescence measurements showed that the phosphors can be efficiently excited by UV to the visible region, and exhibited bluish green light with a peak of 480 nm. The results showed that the boric acid was effective in improving the luminescence intensity of Li2 (Ca0.99, Eu0.01) SiO4: B3+ and the optimum molar ratio of boric acid to calcium nitrate was about 0.06. The optimized phosphors Li2 (Ca0.99, Eu0.01) SiO4: B0.063+ showed 180% improved emission intensity compared with that of the Li2 (Ca0.99, Eu0.01) SiO4 phosphors under ultraviolet (λex =287 nm) excitation.
EN
In order to investigate the influence of the number of layers on the properties of ZrO₂ thin films, we prepared one pure ZrO₂ film sample with five layers and Ce, Eu, and Dy-doped ZrO₂ samples with single layer, by spin-coating sol gel-method. The crystal structures of thin films were determined using X-ray diffraction, morphology of the samples was analyzed by scanning electron microscopy, and the optical properties of the samples were determined by ultraviolet/visible absorbance measurements. The results of these measurements have shown that the concentration of the dopants and the thickness of thin film layers play a vital role in the physical, chemical, and optical properties of the pure and doped ZrO₂ thin films.
EN
In the present work, a CdTe alloy doped with a relatively high concentration of chromium (1%), and a CdTe:Cr layer, have been studied. Absorption and reflectivity spectra were measured at room temperature. They indicate the presence of chromium in the divalent state, both in the alloy and in the layer.
EN
We report the photobehaviour of a series of eight structurally related arylacetylene derivatives, in solution as well as in pristine and PC61BM blended thin-_lms. The formation of both H- and J-aggregates in the solid state have been demonstrated, and, interestingly, an energy transfer from H-aggregates or/and from residual "unstacked" molecules to J-aggregates has been found, the latter being the only emitting species. The fuorescence quenching by PC61BM at di_erent loadings has been studied in blend films, and it has been found particularly effcient in the case of a symmetrical peripheral substitution of the acetylene derivative core. Preliminary time-resolved measurements in emission (ns resolution) and in absorption (fs resolution) con_rmed the H⟶J energy transfer and underlined the presence of delayed fuorescence from Jaggregates, formed by energy transfer from the long-lived first excited singlet state of H-aggregates. In all cases, a homogeneous surface morphology of thin films.
EN
In this study, the phosphors (Sr1−x , Znx)0.9(Al2−y , By)O4 doped 10 mol % Eu2+, were prepared by combustion method as the fluorescent material for white light emitting diodes (WLEDs), performing as a light source. The luminescent properties were investigated by changing the combustion temperature, the boron concentration, and the ratio of Sr to Zn. The luminescence, crystallinity and particle morphology were investigated by using a luminescence spectrometer, X-ray diffractometer (XRD) and transmission electron microscopy (TEM), respectively. The highest intensity of Sr0.9(Al2−y , By)O4: Eu0.12+ phosphor was achieved when the combustion temperature was 600° and the concentration of B3+ was 8 mol % of the aluminate. A new blue emission was observed when the high Zn concentration (x ⩾ 0.8), and this blue emission disappeared with the Zn concentration became lower than 0.8. The combustion method synthesized phosphor (Sr0.6, Zn0.4)0.9(Al1.92, B0.08)O4: Eu0.12+ showed 3.3 times improved emission intensity compared with that of the Sr0.9(Al1.92, B0.08)O4:Eu0.12+ phosphor under λex = 390 nm.
EN
In this study, using spin-coating sol-gel method we fabricated TiO₂ thin films, doped with different concentrations (1, 2, and 3 mole %) of Ce, Dy, and Eu. Characterization of the prepared samples was performed by means of the X-ray diffraction, scanning electron microscopy, ultraviolet visible absorption, and differential thermal and thermo gravimetric analysis. X-ray diffraction measurements have shown that in Eu and Dy-doped samples crystal structure consists of mixed rutile and the dominant anatase phases, however the Ce doped samples consist of anatase phase only. Scanning electron microscopy images have revealed that while average thin film thickness of the Dy-doped samples decreases with increasing concentration of Dy, the average film thicknesses of samples doped with Ce and Eu increases with increasing concentrations of these dopants. Ultraviolet visible absorption spectroscopy measurements have shown that while absorbances of the samples doped by 1 and 2 mole % of the dopants have nearly similar properties, these properties differ from each other for 3 mole % of the dopants. Finally, differential thermal and thermo gravimetric analyses have shown that the chemical reactions and weight losses of the samples have occurred at the expected temperatures.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.