Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Photoreflectance of Epitaxial InGaAs Quantum Rods

100%
EN
Photoreflectance spectroscopy and photoluminescence have been used to study the optical properties and electronic structure of InGaAs quantum rods grown by molecular beam epitaxy. Spectral features associated with interband optical transitions localized in the quantum rod and the surrounding quantum well regions are examined. Experimental results are compared with calculations performed within the envelope function approximation. A red shift of the quantum rod- and a blue shift of the quantum well-related optical transitions, along with a significant increase in PL intensity have been observed if an As_4 source is used instead of an As_2 source during the molecular beam epitaxial growth.
2
100%
EN
Photo- and contactless electroreflectance spectroscopies were applied to study optical properties and electronic structure of GaAs/AlAs superlattice systems with embedded InAs quantum dots. The observed interband transitions related to the quantum dot ground and excited states, as well as optical transitions in the combined system formed by the InAs wetting layer and GaAs/AlAs superlattice are discussed.
EN
The authors demonstrate selective detection of terahertz radiation employing berylliumδ-doped GaAs/AlAs multiple quantum wells. The sensitivity up to 1 V/W within 4.2-7.3 THz range at liquid helium temperatures is reached. The Franz-Keldysh oscillations observed in photo- and electroreflectance spectra allowed one to estimate built-in electric fields in the structures studied. It was found that the electric field strength in the cap layer region could vary from 10 kV/cm up to 26 kV/cm, depending on the structure design and temperature.
EN
We report on optical, photoreflectance and surface photovoltage, as well as terahertz photocurrent investigation of Be-doped GaAs/AlAs multiple quantum wells at room and liquid helium temperatures, respectively. From the Franz-Keldysh oscillations observed in photoreflectance spectra we determine built-in electric fields within the structure. Interband transition energies calculated by the transfer matrix method are in qualitative agreement with experimentally determined values for the samples having various, from 2×10^{10} up to 2.5×10^{12} cm^{-2}, Be doping densities. The photocurrent observed in the range of 5.4-7.3 THz we associate with photoionization of Be-acceptor states.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.