Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Physics
|
2006
|
vol. 4
|
issue 2
155-167
EN
Cholesterol is an important constituent of eukaryotic cell membranes, whose interaction with phospholipids leads to a broad range of biological roles, such as: maintenance of proper fluidity, formation of raft domains, reduction of passive permeability of various chemical species through the bilayer (e.g., glucose, glycerol, K+, Na+ and Cl− ions), and increased mechanical strength of the membrane. In this work we studied an interesting paradigm, as to whether cholesterol-containing phosphatidylcholine biomembranes influence the kinetics and transport features of alamethicin oligomers embedded into it. We demonstrate that moderate relative amounts of cholesterol increase the electrical conductance of various sub-conductance states of the alamethicin oligomer, caused probably by a non-monotonic change in the lumped dipole moment of the biomembrane. Our data suggest that biomembrane stiffness caused by cholesterol, visibly modifies the association-dissociation rates of alamethicin oligomerization in the biomembrane. Moreover, increasing concentrations of cholesterol seem to lead to more stable intermediate alamethicin oligomers. We show that in the presence of cholesterol, as the diameter of the alamethicin oligomer increases, so does the time of another monomer to get picked up. These results brings into focus the interesting issue of how oligomerization of proteins affects their interaction affinities for membrane-based lipids.
Open Physics
|
2005
|
vol. 3
|
issue 1
15-24
EN
Physical consequences of ionic diffusion processes play a major role on the outcome of electrophysiology experiments due to both their contribution to the ionic transmembrane transport and phenomena taking place at the measuring instruments interface. As most of the time heterogenities in biological media with respect to ionic diffusion constants are disregarded, we intended to look upon the general case of ionic diffusion at the interface of two liquids on which gradients of these diffusion constants no longer can be neglected. We developed a theoretical model for the diffusion potential which emerges at an aqueous interface under gradients of concentration and diffusion constants. The experimental validation of our model was achieved through potential difference measurements of the diffusion potential between two solutions containing sodium chloride (NaCl) and glycerine solutions of various concentrations. Within the studied domain of the electrical charge mobility ratio, we noticed that experimental results are in agreement with the theoretically inferred diffusion potential values. This demonstrates that the resulting relationship for the diffusion potential inferred from our model could be applied for other cases, as well. When the ionic solutions contains an indefinite quantity of glycerine or an unknown substance able to modify diffusion constants of sodium and chloride, it was shown that through measurements of the diffusion potential one can infer the unknown concentration of glycerine and the modified ionic mobility ratio. This, in turn, builds up the foundation for a novel yet simple and efficient analitycal sensing device for quantitative determination in the field.
Open Physics
|
2006
|
vol. 4
|
issue 3
405-416
EN
One influential parameter which mediates interactions between many types of molecules and biological membranes stems from the lumped contributions of the transmembrane potential, dipole potential and the difference in the surface potentials on both sides of a membrane. With relevance to cell physiology, such electrical features of a biomembrane are prone to undergoing changes as a result of interactions with the aqueous surrounding. Among the most useful tools devoted to exploring changes of electrical parameters of a lipid membrane induced by certain extracellular ions, lipid composition, and embedded membrane peptides and proteins, are spectroscopic imaging and the inner field compensation (IFC) method. In this work we layout the principles of a fully computerized version of the IFC method, which makes it more readily available to users. As a direct application, we deployed this improved version of the IFC method to time-resolve changes induced by alamethicin monomers upon membrane dipole potential, following their aggregation within an artificial lipid membrane. Intriguingly, even prior crossing the membrane core, the membrane-bound alamethicin monomers are shown to significantly increase the dipole potential of the monolayer they reside in. Such data further emphasize the yet less-explored interplay between membrane-based protein and peptides, and the membrane dipole potential.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.