Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 8

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
Our earlier paper has reported that Wharton's jelly is a reservoir of several peptide growth factors, including acidic and basic fibroblast growth factors (aFGF and bFGF, respectively). Both can be extracted by buffered salts solutions in the form of high molecular mass complexes, probably with a component(s) of the extracellular matrix. Both aFGF and bFGF from such extracts hardly penetrate 10% polyacrylamide gels during electrophoresis. Pre-treatment of Wharton's jelly with hyaluronidase slightly increased the extractability of aFGF, but did not affect the extractability of bFGF. In contrast, the pre-treatment of tissue homogenate with bacterial collagenase (2000 U/ml, 37°C, 18 h) increased the extractability of bFGF. The presence of β-mercaptoethanol in the extracting solutions increased the extractability of both FGFs, but did not release FGFs in their free form, despite reducing the molecular mass of the FGF-containing complexes. We conclude that both aFGF and bFGF are bound through disulphide bonds to a protein component of Wharton's jelly. We propose that ground substance composed mainly of collagen fibrils and hyaluronate molecules, which surrounds the cells of Wharton's jelly, prevents the access of the extracting solution to aFGF and bFGF. Although hyaluronate and collagen do not bind aFGF or bFGF directly, they may constitute a barrier which prevents the dispersion of FGFs in Wharton's jelly. Thus, the high concentration of FGFs around the cells of Wharton's jelly may facilitate the interaction of these factors with membrane receptors, thereby resulting in stimulation of cell division and differentiation, as well as of the synthesis of extracellular matrix components.
|
2002
|
vol. 49
|
issue 4
999-1004
EN
Pre-eclampsia, the most common pregnancy associated syndrome, is connected with remodelling of extracellular matrix of the umbilical cord tissues. Since the fibroblast growth factor (FGF) is known to be a stimulator of collagen and glycosaminoglycan biosynthesis, one may expect that it plays an important role in such a remodelling. Studies performed on the umbilical cords of 10 control and 10 pre-eclamptic newborns demonstrated that both the umbilical cord arterial wall and Wharton's jelly contain FGF mainly in complexes with the components of different molecular mass. Pre-eclampsia is associated with a decrease of endogenous FGF-binding by soluble high molecular mass components of the umbilical cord. It is suggested that FGF released from these complexes may be actively bound by fibroblasts of the umbilical cord, stimulating them to produce collagen and sulphated glycosaminoglycans.
5
Content available remote

Accumulation of collagen in ovarian benign tumours

100%
EN
Extracellular matrix components of benign ovarian tumours (cystadenoma, adenofibroma, cystadenofibroma) were analysed. The investigated tumours contained twice as much collagen than control ovarian tissues. Significant alterations in mutual quantitative relationships between collagens of various types were observed. The proportion of type I collagen decreased and that of type III collagen increased. The accumulation of collagen was accompanied by a reduction in sulphated glycosaminoglycan content whereas the amount of hyaluronic acid was not changed. Dermatan sulphate was the most abundant glycosaminoglycan component. It is suggested that the accumulation of collagen (natural barrier to the migration of tumour cells) and underexpression of glycosaminoglycans/proteoglycans (binding some growth factors and interleukins) may exert an inhibitory effect on tumour growth.
EN
The extracellular matrix components show specific distribution patterns within various structures of the umbilical cord, among which Wharton's jelly is especially collagen-rich tissue. Cathepsin L is a potent cysteine protease engaged in degradation of extracellular matrix proteins, including collagens. We evaluated the activity and expression of cathepsin L, and the inhibitory effect of cysteine protease inhibitors in the umbilical cord arteries, vein and Wharton's jelly. Cathepsin L activity and anti-papain inhibitory effect of cysteine protease inhibitors were quantified in extracts of separated umbilical cord tissues using fluorogenic substrates. The results were calculated per DNA content. The enzyme expression was assessed by Western immunoblotting. The active cathepsin L activity (without activation by pepsin digestion), its percentage in the total activity (after pepsin activation), and the expression of the mature single-chain enzyme were the lowest in the umbilical cord arteries and the highest in Wharton's jelly. The effect of cysteine protease inhibitors showed similar distribution as in the case of the active enzyme, being the highest in Wharton's jelly. Distribution of the activity and expression of mature cathepsin L within the umbilical cord probably results from distinctions in the proenzyme activation process. Differences in the action of cysteine protease inhibitors can partly restrict divergences in the enzyme activity that could reflect its expression alone. Differential enzyme action seems to contribute to tissue-specific collagen turnover within the umbilical cord cells, especially those of Wharton's jelly.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.