Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
The use of diamond as material for X-ray detector is subject of investigation and practice in radiotherapy, space and material science and technology. This paper presents the results of application of Monte Carlo method for simulation of photon transport through diamond detector. The aim is restitution and demonstrating of numerical technique for characterization of electrical properties for different detector conditions and configurations. Monte Carlo code was adopted to determine the energy deposited and dose distribution in the structure of diamond detector. Our results show that the use of numerical simulations may be of essential help in design of diamond detector systems.
EN
This work presents a characterization of radiation absorption properties of silicon carbide (SiC) as semiconductor for the realization of detectors for X-rays. SiC detectors can potentially reach superior performance with respect to all the other semiconductors presently employed in hazardous environments in nuclear and space science and technology. Physics and numerical modeling of photons transport through SiC detector is incorporated in non-destructive Monte Carlo method for determining the energy deposited and dose distribution. The Monte Carlo code has been adopted for numerical simulations for different detector conditions and configurations. The X-ray characterization of new SiC structures originates the improving of design of these detector systems.
3
Content available remote

Radiation Absorption Characteristics of Titanium Alloys

76%
EN
Titanium alloys have found numerous applications in space research, and nuclear industry and research. Since X-rays constitute an important part of the space radiation environment, numerical simulations of radiation absorption characteristics of titanium alloys were studied in this paper. The photon transport Monte Carlo software was used for determining the energy deposited in titanium samples. The numerical results show the pronounced dependence of radiation absorption properties of different combinations of components in alloy. The results obtained are encouraging in respect of optimization of structure of alloys regarding their required features in radiation shielding.
4
64%
EN
The basic building block of every photonic circuit is a waveguide. In this paper we investigate the most popular silicon waveguide structures in the form of a silicon-on-insulator rib waveguide. We also analyse two structures that can find applications in mid- and long-wave infrared regions: free-standing and hollow core omnidirectional waveguides.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.