Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
On textured n-type silicon substrates for solar cell manufacturing, the relation between light trapping behavior, structural imperfections, energetic distribution of interface state densities and interface recombination losses were investigated by applying surface sensitive techniques. The field-modulated surface photovoltage (SPV), in-situ photoluminescence (PL) measurements, total hemispherical UV-NIR-reflectance measurements and electron microscopy (SEM) were employed to yield detailed information on the influence of wet-chemical treatments on preparation induced micro-roughness and electronic properties of polished and textured silicon substrates. It was shown that isotropic as well as anisotropic etching of light trapping structures result in high surface micro-roughness and density of interface states. Removing damaged surface layers in the nm range by wet-chemical treatments, the density of these states and the related interface recombination loss can be reduced. In-situ PL measurements were applied to optimise HF-treatment times aimed at undamaged, oxide-free and hydrogen-terminated substrate surfaces as starting material for subsequent solar cell preparations.
Open Physics
|
2011
|
vol. 9
|
issue 6
1472-1481
EN
Ultrathin SiO2 layers for potential applications in nano-scale electronic and photovoltaic devises were prepared by exposure to thermalized atomic oxygen under UHV conditions. Wet-chemical substrate pretreatment, layer deposition and annealing processes were applied to improve the electronic Si/SiO2 interface properties. This favourable effect of optimized wet-chemical pre-treatment can be preserved during the subsequent oxidation. The corresponding atomic-scale analysis of the electronic interface states after substrate pre-treatment and the subsequent silicon oxide layer formation is performed by field-modulated surface photovoltage (SPV), atomic force microscopy (AFM) and spectroscopic ellipsometry in the ultraviolet and visible region (UV-VIS-SE).
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.